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Abstract

This paper completes the construction of p-adic L-functions for unitary groups. More precisely,
in Harris, Li and Skinner [‘p-adic L-functions for unitary Shimura varieties. I. Construction
of the Eisenstein measure’, Doc. Math. Extra Vol. (2006), 393–464 (electronic)], three of the
authors proposed an approach to constructing such p-adic L-functions (Part I). Building on
more recent results, including the first named author’s construction of Eisenstein measures and
p-adic differential operators [Eischen, ‘A p-adic Eisenstein measure for unitary groups’, J. Reine
Angew. Math. 699 (2015), 111–142; ‘p-adic differential operators on automorphic forms on unitary
groups’, Ann. Inst. Fourier (Grenoble) 62(1) (2012), 177–243], Part II of the present paper provides
the calculations of local ⇣ -integrals occurring in the Euler product (including at p). Part III of the
present paper develops the formalism needed to pair Eisenstein measures with Hida families in the
setting of the doubling method.

2010Mathematics Subject Classification: 11F85, 11F66, 14G10, 11F55 (primary); 11R23, 14G35,
11G10, 11F03 (secondary)

1. Introduction

This paper completes the construction of p-adic L-functions for unitary groups.
More precisely, in [HLS06], three of the authors proposed an approach to
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constructing such p-adic L-functions (Part I). Building on more recent results,
including the first named author’s construction of Eisenstein measures and p-
adic differential operators [Eis15, Eis12], Part II of the present paper provides
the calculations of local ⇣ -integrals occurring in the Euler product (including at
p). Part III of the present paper develops the formalism needed to pair Eisenstein
measures with Hida families in the setting of the doubling method.
The construction of p-adic L-functions consists of several significant steps,

including studying certain ⇣ -integrals occurring in the Euler products of the
corresponding C-valued L-functions (one of the main parts of this paper, which
involves certain careful choices of local data and which is the specific step about
which we are most frequently asked by others in the field) and extending and
adapting earlier constructions of p-adic L-functions (for example Hida’s work
in [Hid96], which recovers Katz’s construction from [Kat78] as a special case).
We also note that the last three named authors had already computed local zeta
integrals for sufficiently regular data as far back as 2003, but the computations
were not included in [HLS06] for lack of space. Since then, a new approach to
choosing local data and computing local zeta integrals at primes dividing p has
allowed us to treat the general case. These are the computations presented here.
In Section 1.1, we put this paper in the context of the full project to construct

p-adic L-functions (which comprises the present paper and [HLS06]), and
we describe the key components and significance of the broader project. The
exposition in the present paper, especially the description of the geometry, was
written carefully to provide a solid foundation for future work both by the authors
of this paper and by other researchers in the field.

1.1. About the project. Very precise and orderly conjectures predict how
certain integer values of L-functions of motives over number fields, suitably
modified, fit together into p-adic analytic functions (for example [Coa89,
CPR89, Pan94, Hid96]). These functions directly generalize the p-adic zeta
function of Kubota and Leopoldt that has played a central role in algebraic
number theory, through its association with Galois cohomology, in the form
of Iwasawa’s Main Conjecture. Such p-adic L-functions have been defined
in a number of settings. In nearly all cases they are attached to automorphic
forms rather than to motives; no systematic way is known to obtain information
about special values of motivic L-functions unless they can be identified with
automorphic L-functions. However, the procedures for attaching L-functions to
automorphic forms other than Hecke characters are by no means orderly; any
given L-function can generally be obtained by a number of methods that have
no relation to one another, and in general no obvious relation to the geometry
of motives. And while these procedures are certainly precise, they also depend
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on arbitrary choices: the L-function is attached abstractly to an automorphic
representation, but as an analytic function it can only be written down after
choosing a specific automorphic form, and in general there is no optimal choice.
When Hida developed the theory of analytic families of ordinary modular

forms he also expanded the concept of p-adic L-functions. Hida’s constructions
naturally gave rise to analytic functions in which the modular forms are variables,
alongside the character of GL(1) that plays the role of the s variable in
the complex L-function. This theory has also been generalized, notably to
overconvergent modular forms. There seems to be a consensus among experts
on how this should go in general, but as far as we know no general conjectures
have been made public. This is in part because constructions of p-adic families
are no more orderly than the construction of automorphic L-functions, except
in the cases Hida originally studied: families are realized in the coherent or
topological cohomology of a locally symmetric space; but the connection of the
latter to motives is tenuous and in many cases purely metaphoric. (In principle,
completed cohomology in Emerton’s sense could also be used for this purpose,
and would give rise to more general families. As far as we know p-adic L-
functions have not yet been constructed in this setting.)
The present project develops one possible approach to the construction of p-

adic L-functions. We study complex L-functions of automorphic representations
of unitary groups of n-dimensional hermitian spaces, by applying the doubling
method of Garrett and Piatetski—Shapiro–Rallis [Gar84, GPSR87] to the
automorphic representations that contribute to the coherent cohomology of
Shimura varieties in degree 0; in other words, to holomorphic modular forms.
When n = 1, we recover Katz’s theory of p-adic L-functions of Hecke
characters [Kat78], and much of the analytic theory is an adaptation of Katz’s
constructions to higher dimensions. For general n, the theory of ordinary families
of holomorphic modular forms on Shimura varieties of PEL type has been
developed by Hida, under hypotheses on the geometry of compactifications that
have subsequently been proved by Lan. It is thus no more difficult to construct
p-adic L-functions of Hida families than to study the p-adic versions of complex
L-functions of individual automorphic representations. However, interpreting
our results poses a special challenge. The conjectures on motivic p-adic L-
functions are formulated in a framework in which the Betti realization plays a
central role, in defining complex as well as p-adic periods used to normalize the
special values. Betti cohomology exists in the automorphic setting as well, but
it cannot be detected by automorphic methods. The doubling method provides a
substitute: the cup product in coherent cohomology. Here one needs to exercise
some care. Shimura proved many years ago that the critical value at s = 1
of the adjoint L-function attached to a holomorphic modular form f equals
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the Petersson square norm h f, f i, multiplied by an elementary factor. If one
takes this quantity as the normalizing period, the resulting p-adic adjoint L-
function is identically equal to 1. Hida observed that the correct normalizing
period is not h f, f i but rather the product of (normalized) real and imaginary
periods; using this normalization, one obtains a p-adic adjoint L-function whose
special values measure congruences between f and other modular forms. This
is one of the fundamental ideas in the theory of deformations of modular forms
and Galois representations; but it seems to be impossible to apply in higher
dimensions, because the real and imaginary periods are defined by means of
Betti cohomology. One of the observations in the present project is that the
integral information provided by these Betti periods can naturally be recovered
in the setting of the doubling method, provided one works with Hida families
that are free over their corresponding Hecke algebras, and one assumes that
the Hecke algebras are Gorenstein. These hypotheses are not indispensable, but
they make the statements much more natural, and we have chosen to adopt them
as a standard; some of the authors plan to indicate in a subsequent paper what
happens when they are dropped.
This approach to families is the first of the innovations of the present project,

in comparison with the previous work [HLS06]. We stress that the Gorenstein
hypothesis, suitably interpreted, is particularly natural in the setting of the
doubling method. Our second, most important innovation, is the use of the
general Eisenstein measure constructed in [Eis15, Eis14].
In order to explain the contents of this project more precisely, we remind the

reader what is expected of a general theory of p-adic L-functions. We are given a
p-adic analytic space Y and a subset Y class of points such that, for each y 2 Y class

there is a motive My , and possibly an additional datum ry (a refinement) such that
0 is a critical value of the L-function L(s,My). The p-adic L-function is then a
meromorphic function Lp on Y whose values at y 2 Y class can be expressed in
terms of L(0,My). More precisely, there is a p-adic period p(My, ry) such that

Lp(y)
p(My ,ry )

is an algebraic number, and then we have the relation

Lp(y)
p(My, ry)

= Z1(My)Z p(My, ry) ·
L(0,My)

c+(My)
. (1)

Here c+(My) is the period that appears in Deligne’s conjecture on special values
of L-functions, so that L(0,My )

c+(My )
is an algebraic number, while Z1 and Z p are

correction factors that are built out of Euler factors and "-factors of the zeta
function of My at archimedean primes and primes dividing p, respectively.
In our situation, we start with a CM field K over Q, a quadratic extension

of a totally real field K+, and an n-dimensional hermitian vector space V/K.
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Then Y is the space of pairs (�,�), where � runs through the set of ordinary
p-adic modular eigenforms on the Shimura variety Sh(V ) attached to U (V ) and
� runs through p-adic Hecke characters of K; both � and � are assumed to
be unramified outside a finite set S of primes of K, including those dividing
p, and of bounded level at primes not dividing p. Because we are working
with ordinary forms—more precisely, what Hida calls nearly ordinary forms,
though the terminology is used inconsistently in the literature —the ring O(Y )
of holomorphic functions on Y is finite over some Iwasawa algebra, and the
additional refinement is superfluous. In the project, � denotes a character of
Hida’s (nearly) ordinary Hecke algebra. If (�,�) 2 Y class then

• � = �⇡ for some automorphic representation ⇡ of U (V ); it is the character of
the ordinary Hecke algebra acting on vectors that are spherical outside S and
(nearly) ordinary at primes dividing p;

• � is a Hecke character of type A0;

• the standard L-function L(s,⇡,�) has a critical value at s = 0.

(By replacing � by its multiples by powers of the norm character, this definition
accommodates all critical values of L(s,⇡,�).) Under hypotheses to be
discussed below, the automorphic version of Equation (1) is particularly simple
to understand:

Lp(�⇡ ,�) = c(⇡) · Z1(⇡,�)Z p(⇡,�)ZS ·
L(0,⇡,�)

P⇡,�

. (2)

The left-hand side is the specialization to the point (�⇡ ,�) of an element
Lp 2 O(Y ). The right-hand side is purely automorphic. The L-function is the
standard Langlands L-function of U (V ) ⇥ GL(1)K. Its analytic and arithmetic
properties have been studied most thoroughly using the doubling method. If
U (V ) is the symmetry group of the hermitian form h·, ·iV on V , let �V be the
space V with the hermitian form �h·, ·iV , and let U (�V ) and Sh(�V ) be the
corresponding unitary group and Shimura variety. The groupsU (V ) andU (�V )
are canonically isomorphic, but the natural identification of Sh(�V ) with
Sh(V ) is anti-holomorphic; thus, holomorphic automorphic forms on Sh(V ) are
identified with anti-holomorphic automorphic forms, or coherent cohomology
classes of top degree, on Sh(�V ), and vice versa. The space W = V � (�V ),
endowed with the hermitian form h·, ·iV��h·, ·iV , is always maximally isotropic,
so U (W ) has a maximal parabolic subgroup P with Levi factor isomorphic to
GL(n)K. To any Hecke character � ofK one associates the family of degenerate
principal series

I (� , s) = IndU (W )(A)
P(A) � � det ·��s/n

P
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and constructs the meromorphic family of Eisenstein series s 7! E(� , s, f, g)
with f = f (s) a section of I (� , s) and g 2 U (W )(A). On the other hand,
U (V ) ⇥ U (�V ) naturally embeds in U (W ). Thus, if � and �0 are cuspidal
automorphic forms on U (V )(A) and U (�V )(A), respectively, the integral

I (�,�0, f, s)

=
Z

[U (V )⇥U (�V )]

E(� , s, f, (g1, g2))�(g1)�0(g2)��1(det(g2)) dg1 dg2,

defines a meromorphic function of s. Here [U (V ) ⇥ U (�V )] = U (V )
(F)\U (V )(A)⇥U (�V )(F)\U (�V )(A), g1 2 U (V )(A), g2 2 U (�V )(A), and
dg1 and dg2 are Tamagawa measures.
The doubling method asserts that, if ⇡ is a cuspidal automorphic

representation of U (V ) and � 2 ⇡ , then I (�,�0, f, s) vanishes identically
unless �0 2 ⇡_; and if h�,�0i 6= 0, then the integrals I (�,�0, f, s) unwind and
factor as an Euler product whose unramified terms give the standard L-function
L(s + 1

2 ,⇡,�) and (as f , �, �0 vary) provide the meromorphic continuation
and functional equation of the standard L-function. Another way to look at this
construction is to say that the Garrett map

� 7! G( f,�, s)(g2)

= ��1 � det(g2) ·
Z

U (V )(F)\U (V )(A)]
E(� , s, f, (g1, g2))�(g1) dg1

is a linear transformation from the automorphic representation ⇡ of U (V ) to ⇡
viewed as an automorphic representation of U (�V ); and the matrix coefficients
of this linear transformation give the adelic theory of the standard L-function.We
develop a theory that allows us to interpret these matrix coefficients integrally in
Hida families, under special hypotheses on the localized Hecke algebra described
below. Note that when ⇡ is an anti-holomorphic representation of U (V ), its
image under the Garrett map is ⇡ , but viewed as a holomorphic representation
of U (�V ).
The factor P⇡,� is a product of several terms, of which the most important is

a normalized Petersson inner product of holomorphic forms on U (V ). Although
it arises naturally as a feature of the doubling method, its definition involves
some choices that are reflected in the other terms. The local term ZS , in our
normalization, is a local volume multiplied by a local inner product (depending
on the choices). The correction factors Z1 and Z p are explicit local zeta integrals
given by the doubling method. The archimedean factor has not been evaluated
explicitly, except when ⇡ is associated to a holomorphic modular form of scalar
weight (by Shimura) or, more generally, of weight that is ‘half scalar’ at every
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archimedean place (by Garrett) [Shi97, Gar08]. In the present paper we leave it
unspecified; it depends only on the archimedean data (the weights) and not on
the Hecke eigenvalues.
The explicit calculation of the local term Z p is our third major innovation

and one of the key pieces of the current paper, and it occupies the longest single
section of this paper (Section 4). It has the expected form: a quotient of a product
of Euler factors (evaluated at s) by another product of Euler factors (evaluated at
1 � s) multiplied by a local " factor and a volume factor. The key observation is
that the denominator arises by applying the Godement–Jacquet local functional
equation to the input data. This is the step in the construction that owes the
most to (adelic) representation theory. The input data for the Eisenstein measure
represent one possible generalization of Katz’s construction in [Kat78]. The
local integral has been designed to apply to overconvergent families as well as
to ordinary families; one of us plans to explore this in future work. The precise
form of the local factor at a prime w dividing p depends on the signatures of the
hermitian form at the archimedean places associated to p as part of the ordinary
data; this appears mysterious but in fact turns out to be a natural reflection of
the PEL structure at primes dividing p, or alternatively of the embedding of the
ordinary locus of the Shimura variety attached to (two copies of) U (V ) in that
attached to the doubled group.
A different calculation of the local term had been carried out at the time

of [HLS06]. It was not published at the time because of space limitations. It
was more ad hoc than the present version and applied only when the adelic
local components at primes dividing p of an ordinary form could be identified as
explicit functions in a principal series. The present calculation is more uniform
and yields a result in the expected form.
Before explaining the final factor c(⇡), it is preferable to explain the special

hypotheses underlying the formula (2), which represent the fourth innovation in
this project. The point (�⇡ ,�) belongs to a Hida family, which for the present
purposes means a connected component, which we denote Y⇡,� , of the space
Y ; in other contexts one works with an irreducible component. The ring of
functions on Y⇡,� is of the form ⇤ ⌦̂T⇡ , where ⇤ is an Iwasawa algebra attached
to � and T⇡ is the localization of the big Hecke algebra at the maximal ideal
attached to ⇡ . The principal hypotheses are that T⇡ is Gorenstein, and that the
module of ordinary modular forms (or its Zp-dual, to be more precise) is free
over T⇡ . There are also local hypotheses that correspond to the hypothesis of
minimal level in the Taylor–Wiles theory of deformations of modular Galois
representations. These hypotheses make it possible to define Lp as an element
of OY⇡,�

. The presence of the factor c(⇡) is a sign that Lp is not quite the p-
adic L-function; c(⇡) is a generator of the congruence ideal which measures
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congruences between �⇡ and other characters �⇡ 0 of T⇡ (of the same weight
and level). The specific generator c(⇡) depends on the same choices used to
define P⇡,� , so that the product on the right-hand side is independent of all
choices.
In the absence of the special hypotheses, it is still possible to define Lp in the

fraction field of ⇤ ⌦̂T⇡ , but the statement is not so clean. In any case, the p-adic
valuations of c(⇡) are in principle unbounded, and so the p-adic interpolation of
the normalized critical values of standard L-functions is generally given by a
meromorphic function on Y .

1.1.1. Clarifications. The above discussion has artificially simplified several
points. The Shimura variety is attached not to U (V ) but rather to the subgroup,
denoted GU(V ), of the similitude group of V with rational similitude factor. All
of the statements above need to be modified to take this into account, and this
is done in the paper. Since completing the present paper, one of the authors has
begun to work with Shimura varieties attached to the unitary groups themselves.
It should be easy for motivated readers to reformulate the results of the present
paper in this alternative language.
What we called the moduli space of PEL type associated to V is, in general,

a union of several isomorphic Shimura varieties, indexed by the defect of the
Hasse principle; p-adic modular forms are most naturally defined on a single
Shimura variety rather than on the full moduli space. We need the moduli space
in order to define p-adic modular forms, but in the computations we work with
a single fixed Shimura variety.
Although the p-adic L-functions are attached to automorphic forms on unitary

(similitude) groups, they are best understood as p-adic analogues of the standard
L-functions of cuspidal automorphic representations of GL(n). The passage
from unitary groups to GL(n) is carried out by means of stable base change.
A version of this adequate for our applications was developed by Labesse
in [Lab11]. Complete results, including precise multiplicity formulas, were
proved by Mok for quasisplit unitary groups [Mok15]; however, we need
to work with unitary groups over totally real fields with arbitrary signatures,
and the quasisplit case does not suffice. The general case is presently being
completed by Kaletha, Minguez, Shin, and White, and we have assumed
implicitly that Arthur’s multiplicity conjectures are known for unitary groups.
The book [KMSW14] works out the multiplicities of tempered representations
and is probably sufficient for the purposes of the present project.
From the standpoint of automorphic representations of GL(n), the ordinary

hypothesis looks somewhat special; in fact, the critical values of L-functions of
GL(n) can be interpreted geometrically on unitary groups of different signatures,
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and the ordinary hypotheses for these different unitary groups represent different
branches of a p-adic L-function that can only be related to one another in
a general overconvergent family. The advantage of restricting our attention to
ordinary families is that the p-adic L-functions naturally belong to integral
Hecke algebras. However, to add to the confusion, Hida’s theory of (nearly)
ordinary modular forms applies to holomorphic automorphic representations, but
the doubling method requires us to work with anti-holomorphic representations.
The eigenvalues of the Up-operators on representations do not coincide with
those on their holomorphic duals; for lack of a better terminology, we call these
representations anti-ordinary. Keeping track of the normalizations adds to the
bookkeeping but involves no essential difficulty.

1.1.2. What this project does not accomplish. Although we have made an
effort to prove rather general theorems, limitations of patience have induced us
to impose restrictions on our results. Here are some of the topics we have not
covered.
First of all, we have not bothered to verify that the local terms (Z p,

Z1, ZS) and the global terms (L(0,⇡,�), Q⇡,� ) in Equation (2) correspond
termwise with those predicted by the general conjectures on p-adic L-functions
for motives. The correspondence between automorphic representations and
(de Rham realizations of) motives is not straightforward. In a general sense,
comparing (1) with (2), we can say that the motive My that appears in (1)
corresponds in (2) to the hypothetical motive attached to the automorphic
representation ⇡ , whose `-adic realization is the n-dimensional representation
of Gal(Q̄/K) constructed in [Che04] (among many other places), twisted by the
`-adic Galois character attached to the Hecke character � . The local factor Z p

certainly has the same shape as the local factors that appear in the conjectures
of [Coa89, CPR89], but we have not checked that the Frobenius eigenvalues
that appear in the latter conjectures are exactly the ones we find. We expect to
address these issue in a subsequent paper; however, until we find a simple way
to compute the archimedean term Z1(⇡,�) explicitly, we will not be able to
compare it with anything motivic.
We have also not attempted to analyze the local factors at ramified finite

primes for ⇡ and � . The geometry of the moduli space has no obvious connection
to the local theory of the doubling method. Moreover, a complete treatment of
ramified local factors requires a p-integral version of the doubling method. This
may soon be available, thanks to work of Minguez, Helm, Emerton-Helm, and
Moss, but for the moment we have preferred to simplify our presentation by
choosing local data that give simple volume factors for the local integrals at bad
primes.
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One of us plans to adapt the methods of the present project to general
overconvergent families, where Hida theory is no longer appropriate. On the
other hand, the methods of Hida theory do apply to more general families than
those we consider. In [Hid98], Hida introduces the notion of P-ordinarymodular
forms on a reductive group G, where P denotes a parabolic subgroup of G. One
obtains the usual (nearly) ordinary forms when P = B is a Borel subgroup; in
general, for P of p-adic rank r , the P-ordinary forms vary in an r -dimensional
family, up to global adjustments (related to Leopoldt’s conjecture in general).
Most importantly, a form can be P-ordinary without being B-ordinary. Our
theory applies to P-ordinary forms as well; we hope to return to this point in
the future, and [EM19] is a first step in this direction.
Our p-adic L-function, when specialized at a classical point corresponding

to the automorphic representation ⇡ , gives the corresponding value of the
classical complex L-function, divided by what appears to be the correctly
normalized complex period invariant, and multiplied by a factor c(⇡)measuring
congruences between ⇡ and other automorphic representations. This is a formal
consequence of the Gorenstein hypothesis and is consistent with earlier work
of Hida and others on p-adic L-functions of families. It is expected that the
factor c(⇡) is the specialization at ⇡ of the ‘genuine’ p-adic L-function that
interpolates normalized values at s = 1 of the adjoint L-function (of ⇡ , or one
of the Asai L-functions for its base change to GL(n)). As far as we know, no one
has constructed this p-adic adjoint L-function in general. We do not know how to
construct a p-adic analytic function on the ordinary family whose specialization
at ⇡ equals c(⇡), not least because c(⇡) is only well defined up to multiplication
by a p-adic unit. Most likely the correct normalization will have to take account
of p-adic as well as complex periods.
Finally, we have always assumed that our base fieldK is unramified at p. This

hypothesis is unnecessary, thanks to Lan’s work in [Lan18], but it simplifies a
number of statements.

1.2. History. Work on this paper began in 2001 as a collaboration between
two of the authors, around the time of a visit by one of us (M.H.) to the second
one (J.-S. L.) in Hong Kong. The initial objective was to study congruences
between endoscopic and stable holomorphic modular forms on unitary groups.
The two authors were soon joined by a third (C. S.), and a report on the
results was published in [HLS05]. The subsequent article [HLS06] carried
out the first part of the construction of a p-adic analytic function for a single
automorphic representation. Because p-adic differential operators had not yet
been constructed for unitary group Shimura varieties, this function only provided
the p-adic interpolation for the right-most critical value of the L-function, and
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only applied to scalar-valued holomorphic modular forms. Moreover, although
the local computation of the zeta integrals at primes dividing p, which was
not included in [HLS06], was based on similar principles to the computation
presented here, it had only been completed for ramified principal series and
only when the conductors of the local inducing characters were aligned with the
slopes of the Frobenius eigenvalues. After the fourth author (E.E.) had defined p-
adic differential operators in [Eis12, Eis16] and constructed the corresponding
Eisenstein measure in [Eis15, Eis14], it became possible to treat general families
of holomorphic modular forms and general ramification.
The delay in completing the paper, for which the authors apologize, can be

attributed in large part to the difficulty of reconciling the different notational
conventions that had accumulated over the course of the project. In the meantime,
Xin Wan had constructed certain p-adic L-functions in the same setting
in [Wan15], by a method based on computation of Fourier–Jacobi coefficients,
as in [SU14]. More recently, Zheng Liu has constructed p-adic L-functions for
symplectic groups [Liu19b]. Among other differences, Liu makes consistent
use of the theory of nearly overconvergent p-adic modular forms, thus directly
interpreting nearly holomorphic Eisenstein series as p-adic modular forms; and
her approach to the local zeta integrals is quite different from ours.

1.3. Contents and structure of this paper. After establishing notation and
conventions in Section 1.4 below, we begin in Section 2 by recalling the theory
of modular forms on unitary groups, as well as Hida’s theory of p-adic modular
forms on unitary groups. This section has carefully set up the framework needed
for our project and will likely also provide a solid foundation for others working
in this area. In Section 3, we discuss the geometry of restrictions of automorphic
forms, since the restriction of an Eisenstein series is a key part of the doubling
method (Section 4.1) used to construct L-functions. In Section 4, we discuss
the doubling method. This section also contains the local zeta calculations
mentioned at the beginning of the introduction. The most important of these
is the calculation at primes dividing p (Section 4.3), which is also the longest
single step of this paper. Section 5 provides statements about measures, which
depend on the local data chosen in Section 4. A formalism for relating duality
pairings to complex conjugation and to the action of Hecke algebras is developed
in Section 6; this is extended to Hida families in Section 7, which also begins
the formalism for construction of p-adic L-functions in families. Section 8
establishes the relation between p-adic and C1-differential operators, and
develops the local theory of ordinary and anti-ordinary vectors in representations
at p-adic places. Finally, Section 9 states and proves the main theorems about the
existence of the p-adic L-function.

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


E. Eischen, M. Harris, J. Li and C. Skinner 12

1.4. Notation and conventions.

1.4.1. General notation. Let Q ⇢ C be the algebraic closure of Q in C and
let the complex embeddings of a number field F ⇢ Q be ⌃F = Hom(F,C); so
⌃F = Hom(F,Q). Throughout, K ⇢ Q is a CM field with ring of integers O,
and K+ is the maximal totally real subfield of K. The nontrivial automorphism
in Gal(K/K+) is denoted by c. Given a place v ofK, the conjugate place c(v) is
usually denoted v̄.
Let p be a fixed prime that is unramified inK and such that every place above

p in K+ splits in K. Let Qp be an algebraic closure of Qp and fix an embedding
inclp : Q ,! Qp. Let Z(p) ⇢ Q be the valuation ring for the valuation determined
by inclp. Let Cp be the completion ofQp and letOCp be the valuation ring of Cp

(so the completion of Z(p)). Let ◆p : C ⇠
�! Cp be an isomorphism extending

inclp.
When V is a hermitian space overK, with hermitian form h, i, we let GU+(V )

denote the group of unitary similitudes of V ; this is a group scheme over K+,
defined by

GU+(V )(R)
= {g 2 GL(V ⌦K+ R) | hg(v), g(v0)i = ⌫(g)hv, v0i 8v, v0 2 V ⌦K+ R},

where ⌫(g) 2 R⇥; here R is any K+-algebra. This is the group that is usually
denoted GU(V ). However, we prefer to reserve the notation GU(V ) for the Q-
subgroup scheme of RK+/Q GU+(V ) which is the fiber product

GU(V ) = RK+/Q GU+(V ) ⇥R
K+/QGm,K+ Gm,

where the map Gm ,! RK+/QGm,K+ is the canonical inclusion.
For any � 2 ⌃K let p� be the prime ofO determined by the embedding inclp �

� . Note that c(p� ) = p�c. For a place w of K over p we will write pw for the
corresponding prime of O. Let ⌃p be a set containing exactly one place of K
over each place of K+ over p.

REMARK 1.4.2. It is often more convenient to denote an algebraic group over a
ring R which is a number field, a p-adic field, or an integer ring, by its group of
points G(R). For example, if V is a free R-module we may write G = GLR(V )
as shorthand for the group scheme over Spec(R)whose group of S-valued points,
for any R-scheme S, is given by G(V ⌦R S).

Let Z(1) ⇢ C be the kernel of the exponential map exp : C ! C⇥. This
is a free Z-module of rank one with noncanonical basis 2⇡

p
�1. For any

commutative ring R let R(1) = R ⌦ Z(1).
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In what follows, when (G, X) is a Shimura datum, an automorphic
representation of G is defined to be a (g, K ) ⇥ G(A f )-submodule of the
space of automorphic forms, where K is the stabilizer of a point in X ; in
particular, K contains the center of G(R) but does not generally contain a full
maximal compact subgroup. In this way, holomorphic and anti-holomorphic
representations are kept separate. This is of fundamental importance for
applications to coherent cohomology and thus to our construction of p-adic
L-functions.

1.4.3. Measures and pairings. We will need to fix a Haar measure dg on the
adèle group of a reductive group G over a number field F . For the sake of
definiteness we take dg to be Tamagawa measure. In this paper, we will not
be so concerned with the precise choice of measure, because we will not be
calculating local zeta integrals at archimedean primes explicitly, but we do want
to be consistent. When we write dg =

Q
v dgv, where v runs over places of F

and dgv is a Haar measure on the Fv-points G(Fv), we will want to make the
following additional hypotheses:

HYPOTHESES 1.4.4. (1) At all finite places v at which the group G is
unramified, dgv is the measure that gives volume 1 to a hyperspecial
maximal compact subgroup.

(2) At all finite places v at which the group G is isomorphic to
Q

i GL(ni ,
Fi,wi ), where Fi,wi is a finite extension of Fv with integer ring Oi (whether
or not Fi,wi is ramified over the corresponding completion of Q) dgv is the
measure that gives volume 1 to the group

Q
i GL(ni ,Oi).

(3) At all finite places v, the values of dgv on open compact subgroups are
rational numbers.

(4) At archimedean places v, we choose measures such that
Q

v dgv is
Tamagawa measure.

Let ZG ⇢ G denote the center of G, and let Z ⇢ ZG(A) be any closed
subgroup such that ZG(A)/Z is compact; for example, one can take Z to be
the group of real points of the maximal F-split subgroup of ZG . We choose a
Haar measure on Z that satisfies the conditions of 1.4.4 if Z is the group of
adèles of an F-subgroup of ZG . The measure dg defines a bilinear pairing h, i
on L2(Z · G(F)\G(A)); more generally, if f1(zg) f2(zg) = f1(g) f2(g) for all
z 2 Z , we can extend the pairing to write
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h f1, f2iZ =
Z

Z ·G(F)\G(A)
f1(g) f2(g) dg, (3)

and if not, we set h f1, f2iZ = 0.
Suppose ⇡ and ⇡_ are irreducible cuspidal automorphic representations of G.

Then h, iZ : ⇡ ⌦⇡_ ! C is a canonically defined pairing. Now suppose we have
factorizations

fac⇡ : ⇡
⇠

�! ⌦0
v ⇡v, fac⇡_ : ⇡_ ⇠

�! ⌦0
v ⇡_

v , (4)

where ⇡v is an irreducible representation of G(Fv). Moreover, assume that we
are given nondegenerate pairings of G(Fv)-spaces

h, i⇡v
: ⇡v ⌦ ⇡_

v ! C (5)

for all v. Then there is a constant C = C(dg, fac⇡ , fac⇡_,
Q

vh, i⇡v
) such that, for

all vectors ' 2 ⇡ , '_ 2 ⇡_ that are factorizable in the sense that

fac⇡ (') = ⌦v'v; fac⇡_('_) = ⌦v'
_
v

we have

h','_iZ = C
✓
dg, fac⇡ , fac⇡_,

Y

v

h, i⇡v

◆ Y

v

h'v,'
_
v i⇡v

. (6)

When G is quasisplit and unramified over Fv and ⇡v is a principal series
representation, induced from a Borel subgroup B ⇢ G(Fv), we choose a
hyperspecial maximal compact subgroup Kv ⇢ G(Fv) and define the standard
local pairing to be:

h f, f _i⇡v
=

Z

Kv

f (gv) f _(gv) dgv. (7)

In situation (2) of Hypotheses 1.4.4, we take Kv =
Q

i GL(ni ,Oi); however,
the pairing (7) does not depend on the choice of Kv.

Part II: zeta integral calculations
2. Modular forms and p-adic modular forms on unitary groups

This section introduces details about modular forms and p-adic modular
forms on unitary groups that we will need for our applications. For alternate
discussions of modular forms and p-adic modular forms on unitary groups,
see [Hid04, CEF+16].
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2.1. PEL moduli problems: generalities. By a PEL datum we will mean a
tuple P = (B, ⇤,OB, L , h·, ·i, h) where

• B is a semisimple Q-algebra with positive involution ⇤, the action of which
we write as b 7! b⇤;

• OB is a ⇤-stable Z-order in B;

• L is a Z-lattice with a left OB-action and a nondegenerate alternating pairing
h·, ·i : L ⇥ L ! Z(1) such that hbx, yi = hx, b⇤yi for x, y 2 L and b 2 OB ;

• h : C ! EndOB⌦R(L ⌦ R) is a homomorphism such that hh(z)x, yi = hx,
h(z̄)yi for x, y 2 L ⌦ R and z 2 C and �

p
�1h·, h(

p
�1) · i is positive

definite and symmetric.

For the purposes of subsequently defining p-adic modular forms for unitary
groups we assume that the PEL data considered also satisfy:

• B has no type D factor;

• h·, ·i : (L ⌦ Zp) ⇥ (L ⌦ Zp) ! Zp(1) is a perfect pairing;

• p - Disc(OB), where Disc(OB) is the discriminant of OB over Z defined
in [Lan13, Definition 1.1.1.6]; this condition implies that OB ⌦ Z(p) is a
maximal Z(p)-order in B and that OB ⌦ Zp is a product of matrix algebras;

• The technical [Lan13, Condition 1.4.3.10] is satisfied.

We associate a group scheme G = GP over Z with such a PEL datum P: for any
Z-algebra R

G(R) = {(g, ⌫) 2 GLOB⌦R(L ⌦ R)⇥ R⇥ : hgx, gyi = ⌫hx, yi 8x, y 2 L ⌦ R}.

Then G/Q is a reductive group, and by our hypotheses with respect to p, G/Zp is
smooth and G(Zp) is a hyperspecial maximal compact of G(Qp).
Let F ⇢ C be the reflex field of (L , h·, ·i, h) (or of P) as defined in [Lan13,

1.2.5.4] and let OF be its ring of integers. Let ⇤ = {p} or ;, and let Z(⇤)

be the localization of Z at the primes in ⇤. Let S⇤ = OF ⌦ Z(⇤). Let
K⇤ ⇢ G(A⇤

f ) be an open compact subgroup and let K ⇢ G(A f ) be K⇤ if
⇤ = ; and G(Zp)K⇤ otherwise. Suppose that K is neat, as defined in [Lan13,
Definition 1.4.1.8]. Then, as explained in [Lan13, Corollary 7.2.3.10], there is
a smooth, quasiprojective S⇤-scheme MK = MK (P) that represents the functor
on locally noetherian S⇤-schemes that assigns to such a scheme T the set of
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equivalence classes of quadruples (A, �, ◆,↵) where:

• A is an abelian scheme over T ;

• � : A ! A_ is a prime-to-⇤ polarization;

• ◆ : OB ⌦ Z(⇤) ! EndT A ⌦ Z(⇤) such that ◆(b)_ � � = � � ◆(b⇤);

• ↵ is a K⇤-level structure: this assigns to a geometric point t on each connected
component of T a ⇡1(T, t)-stable K⇤-orbit of OB ⌦ A⇤

f -isomorphisms

↵t : L ⌦ A⇤
f

⇠
�! H1(At ,A⇤

f )

that identify h·, ·i with a A⇤,⇥
f -multiple of the symplectic pairing on the Tate

module H1(At ,A⇤
f ) defined by � and the Weil-pairing;

• LieT A satisfies the Kottwitz determinant condition defined by (L⌦R, h·, ·i, h)
(see [Lan13, Definition 1.3.4.1]);

and two quadruples (A, �, ◆,↵) and (A0, �0, ◆0,↵0) are equivalent if there exists
a prime-to-⇤ isogeny f : A ! A0 such that � equals f _ � �0 � f up to some
positive element in Z⇥

(⇤), ◆
0(b) � f = f � ◆(b) for all b 2 OB , and ↵0 = f � ↵.

2.2. PEL moduli problems related to unitary groups. Suppose

P = (B, ⇤,OB, L , h·, ·i, h)

is a PEL datum as in Section 2.1 with:

• B = Km , the product of m copies of K;

• ⇤ is the involution acting as c on each factor of K;

• OB \ K = O where K maps to B = Km diagonally.

We say such a P is of unitary type. By maximality, OB ⌦ Z(p) = O1 ⇥ · · · ⇥
Om = O(p) ⇥ · · ·⇥O(p) (eachOi is a maximal Z(p)-order in K), soOB ⌦Zp

⇠=Q
w|p

Qm
i=1 Ow. Let ei 2 OB ⌦ Z(p) be the idempotent projecting B to the i th

copy of K. Let ni = dimK ei(L ⌦ Q).
Over Zp there is a canonical isomorphism

GLOB⌦Zp(L ⌦ Zp)
⇠

�!
Y

w|p

mY

i=1

GLOw
(ei Lw), g 7! (gw,i), (8)
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induced by theOB ⌦Zp =
Q

w|p OB,w-decomposition L ⌦Zp =
Q

w|p Lw. This
in turn induces

G/Zp

⇠
�! Gm ⇥

Y

w2⌃p

mY

i=1

GLOw
(ei Lw), (g, ⌫) 7! (⌫, (gw,i)). (9)

(Here and elsewhere we use the convention of Remark 1.4.2.)
The homomorphism h determines a pure Hodge structure of weight �1 on

V = L ⌦ C. Let V 0 ⇢ V be the degree 0 piece of the Hodge filtration; this is
anOB ⌦C-submodule. For each � 2 ⌃K, let a�,i = dimC ei(V 0 ⌦O⌦C,� C). Let
b�,i = ni � a�,i . We call the collection of pairs {(a�,i , b�,i)�2⌃K

}, the signature
of h. Note that (a�c,i , b�c,i) = (b�,i , a�,i). The following fundamental hypothesis
will be assumed throughout:

HYPOTHESIS 2.2.1 (Ordinary hypothesis).

p� = p� 0 H) a�,i = a� 0,i .

Forw|p a place ofK, we can then define (aw,i , bw,i)= (a�,i , b�,i) for any � 2 ⌃K

such that pw = p� . Let OB,w = OB ⌦O Ow and Lw = L ⌦O Ow. We fix an
OB ⌦ Zp-decomposition L ⌦ Zp = L+ � L� such that:

• L+ =
Q

w|p L
+
w is anOB⌦Zp =

Q
w|p OB,w-module with rankOw

(ei L+
w)= aw,i

(so L� =
Q

w|p L
�
w with rankOw

(ei L�
w) = bw,i and Lw = L+

w � L�
w);

• L±
w is the annihilator of L±

w̄ for the perfect pairing h·, ·i : Lw ⇥ L w̄ ! Zp(1).

We fix a decomposition of ei L+
w as a direct sum of copies of Ow. Taking Zp-

duals via h·, ·i yields a decomposition of ei L�
w̄ as a direct sum of copies ofOw̄

⇠=
HomZp(Ow,Zp) (the OB-action on HomZp(Ei,w,Zp) factors through eiOB ⌦
Z(p) and is given by b�(x) = �(b⇤x)). The choice of these decompositions
determines isomorphisms

GLOi,w (ei L
+
w)

⇠= GLaw,i (Ow), GLOi,w (ei L
�
w)

⇠= GLbw,i (Ow),

and GLOi,w (ei Lw) ⇠= GLni (Ow).
(10)

With respect to these isomorphisms, the embedding

GLOi,w (ei L
+
w) ⇥ GLOi,w (ei L

�
w) ,! GLOi,w (ei Lw) = GLOi,w (ei L

+
w � ei L�

w)

is just the block diagonal map (A, B) 7!
�
A 0
0 B

�
.
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2.3. Connections with unitary groups and their Shimura varieties. We
recall how PEL data of unitary type naturally arise from unitary groups. Let
V = (Vi , h·, ·iVi )16i6m be a collection of hermitian pairs over K: Vi is a finite-
dimensional K-space and h·, ·iVi : Vi ⇥ Vi ! K is a hermitian form relative
to K/K+. Let � 2 O be totally imaginary and prime to p, and put h·, ·ii =
traceK/Q�h·, ·iVi . Let Li ⇢ Vi be an O-lattice such that hLi , Li ii ⇢ Z and h·, ·ii
is a perfect pairing on Li ⌦ Zp. Such an Li exists because of our hypotheses on
p and its prime divisors in K and on �. For each � 2 ⌃K, Vi,� = Vi ⌦K,� C
has a C-basis with respect to which h·, ·ii,� = h·, ·iVi,� is given by a matrix of
the form diag(1ri,� ,�1si,� ). Fixing such a basis, let hi,� : C ! EndR(Vi,� ) be
hi,� (z)= diag(z1ri,� , z̄1si,� ). Let⌃ = {� 2 ⌃K : p� 2 ⌃p}. Then⌃ is a CM type
of K, and we let hi =

Q
�2⌃ hi,� : C ! EndK+⌦R(Vi ⌦ R) =

Q
�2⌃ EndR(Vi,� ).

Let B = Km , ⇤ the involution that acts by c on each K-factor of B, OB = Om ,
L =

Q
i Li with the i th factor of OB = Om acting by scalar multiplication on

the i th factor of L , h·, ·i =
P

i h·, ·ii , and h =
Q

i hi . Then P = (B, ⇤,OB,

L , 2⇡
p

�1h·, ·i, h) is a PEL datum of unitary type as defined above. Note that
(a�,i , b�,i) equals (ri,� , si,� ) if � 2 ⌃ and otherwise equals (si,� , ri,� ). The reflex
field of this PEL datum P is just the field

F = Q
⇢ X

�2⌃K

a�,i� (a) : a 2 K, i = 1, . . . ,m
��

⇢ C.

This follows, for example, from [Lan13, Corollary 1.2.5.6]. Note that F is
contained in the Galois closure K0 of K in C.
As explained in [Kot92, Section 8] (see also Equations (24) below), over

the reflex field F , a moduli space MK /F associated with P is the union of
|ker1(Q,G)| copies of the canonical model of the Shimura variety SK (G,
XP) associated to (G, hP , K ); here (G, XP) is the Shimura datum for which
hP = h 2 XP and ker1(Q,G) := ker(H 1(Q,G) !

Q
v H

1(Qv,G)). More
precisely, the elements of ker1(Q,G) classify isomorphism classes of hermitian
tuples V 0 = (V 0

j , h·, ·iV 0
j
)16 j6m that are locally isomorphic to V at every place

of Q. Let V = V (1), . . . ,V (k) be representatives for these isomorphism classes.
Then MK /F is naturally a disjoint union of F-schemes indexed by the V ( j):
MK /F =

F
MK ,V ( j) . The scheme MK ,V = MK ,V (1) is the canonical model of

SK (G, XP), and for each j there is an F-automorphism of MK /F mapping MK ,V

isomorphically onto MK ,V ( j) . In [Kot92], Kottwitz only treats the case where
m = 1, but the reasoning is the same in the general case.
If m = 1 and dimK V1 is even, then the group G satisfies the Hasse principle

(that is, ker1(Q,G) = 0). In this case MK is an integral model of the Shimura
variety SK (G, XP). If dimK V1 is odd or m > 1, this is no longer the case.
However, for applications to automorphic forms, we only need one copy of
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SK (G, XP). We let MK ,L be the scheme-theoretic closure of the F-scheme MK ,V

in MK ; this is a smooth, quasiprojective S⇤-scheme. We let

sL : MK ,L ,! MK (11)

be the inclusion. We will refer to MK as the moduli space and MK ,L as the
Shimura variety.

REMARK 2.3.1. For any PEL datum P , Lan has explained how the canonical
model of the Shimura variety SK (G, XP) is realized as an open and closed
subscheme of MK /F [Lan12, Section 2], with a smooth, quasiprojective S0-
model provided by its scheme-theoretic closure in MK . This is just the model
described above.

2.3.2. Base points. Suppose m = 1. Let (V, h·, ·iV ) = (V1, h·, ·iV1), and let
n = dimK V . SupposeK1, . . . ,Kr are finite CM extensions ofK with

Pr
i=1[Ki :

K] = n. For i = 1, . . . , r , let J0,i be the Serre subtorus (defined in, for
example, [CCO14, Definition A.4.3.1]) of ResKi /QGm and let ⌫i : J0,i ! Gm

be its similitude map. Let J 0
0 ⇢

Qr
i=1 J0,i be the subtorus defined by equality of

all the ⌫i . Let V 0
i = Ki , viewed as a K-space of dimension [Ki : K]. Each V 0

i
can be given a Ki -hermitian structure such that �i V 0

i is isomorphic to V as an
hermitian space over K. Such an isomorphism determines an embedding of J 0

0
in G. Moreover, with respect to such an embedding, there exists a point h0 2 XP

that factors through the image of J 0
0(R) in G(R). The corresponding embedding

of Shimura data (J 0
0, h0) ! (G, X) defines a CM Shimura subvariety of MK ,L .

For the caseKi = K for all i (so r = n), we write J (n)
0 for J 0

0; this corresponds
to a PEL datum as in Section 2.1 with B = Kn . The base point h 2 XP is called
standard if it factors through an inclusion of J (n)

0 . We henceforward assume that
the base point h in the PEL datum P is standard. This will guarantee that later
constructions involving Harish–Chandra modules are rational over the Galois
closure of K.
Concretely, the assumption that h is standard just means that V has a K-basis

with respect to which h·, ·iV is diagonalized and that each h� has image in the
diagonal matrices with respect to the induced basis of V ⌦K,� C.

2.4. Toroidal compactifications. One of the main results of [Lan13] is the
existence of smooth toroidal compactifications of MK over S⇤ associated to
certain smooth projective polyhedral cone decompositions (which we do not
make precise here); when ⇤ = ; this was already known. We denote such a
compactification by Mtor

K ,⌃ . See [Lan13, Section 6.4] for the main statements
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used below. There is a notion of one polyhedral cone decomposition refining
another that partially orders the ⌃’s. If ⌃ 0 refines ⌃ , then there is a canonical
proper surjective map ⇡⌃ 0,⌃ : Mtor

K ,⌃ 0 ! Mtor
K ,⌃ that is the identity on MK . We

write Mtor
K for the tower of compactifications {Mtor

K ,⌃}⌃ . In certain situations (for
example, changing the group K , defining Hecke operators) it is more natural
to work with this tower, avoiding making specific compatible choices of ⌃ or
having to vary the ‘fixed’ choices.
If K⇤

1 ⇢ K⇤
2 then the natural map MK1 ! MK2 extends canonically to a map

(of towers) Mtor
K1

! Mtor
K2
. Similarly, if g 2 G(A⇤

f ), then the map [g] : MgKg�1 !
MK , (A, �, ◆,↵) 7! (A, �, ◆,↵g), extends canonically to a map Mtor

gKg�1 ! Mtor
K .

This defines a right action of G(A⇤
f ) on the tower (of towers!) {Mtor

K }K⇤⇢G(A⇤
f ).

In the setting of Section 2.3, we let Mtor
K ,L ,⌃ be the scheme-theoretic closure

of MK ,V in Mtor
K ,⌃ . This is a smooth toroidal compactification of the Shimura

variety MK ,L , as discussed in, for example, [LS13, Section 4.1] and [Lan12,
Sections 3–4]; the base change to F is just the usual toroidal compactification
of the canonical model. We continue to denote by sL the induced inclusion
Mtor

K ,L ,⌃ ⇢ Mtor
K ,⌃ . Varying ⌃ and K as above induces maps between the Mtor

K ,L ,⌃ .
We let Mtor

K ,L be the tower {Mtor
K ,L ,⌃}⌃ . The action of G(A⇤

f ) on {Mtor
K }K⇤⇢G(A⇤

f )

induces an action on {Mtor
K ,L}K⇤⇢G(A⇤

f ).
Our convention will be to describe constructions over Mtor

K as though Mtor
K were

a single scheme. The reader should bear in mind that this means a tower of such
constructions over each Mtor

K ,⌃ . In particular, when we define a sheaf F over Mtor
K

(or some similar tower of schemes), this will be a sheaf F⌃ on each Mtor
K ,⌃ such

that there is a natural map ⇡⇤
⌃ 0,⌃ : ⇡�1

⌃ 0,⌃F⌃ ! F⌃ 0 for any ⌃ 0 that refines ⌃ . By
Hi(Mtor

K ,F) we mean the direct limit lim
�!⌃

Hi(Mtor
K ,⌃ ,F⌃). In practice, the maps

of cohomology groups appearing in such a limit will all be isomorphisms.

2.5. Level structures at p. Let H = GLOB⌦Zp(L+). The identification (10)
determines an isomorphism

H ⇠
�!

Y

w|p

mY

i=1

GLaw,i (Ow). (12)

Let BH ⇢ H be the Zp-Borel that corresponds via this isomorphism with the
product of the upper-triangular Borels and let Bu

H be its unipotent radical. Let
TH = BH/Bu

H ; this is identified by isomorphism (12) with the diagonal matrices.
Suppose ⇤ = {p}. There exists a semiabelian scheme A over Mtor

K that is part
of a degenerating family as in [Lan13, Theorem 6.4.1.1]. In particular, there
exists a dual semiabelian schemeA_ (in the sense of [Lan13, Theorem 3.4.3.2])
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together with a homomorphism � : A ! A_, a homomorphism ◆ : OB ⌦Z(p) !
EndMtor

K
(A), and a K (p)-level structure on A/MK such that the restriction of (A,

�, ◆,↵) over MK represents the universal tuple (that is, the tautological tuple in
the sense of [Lan13, Theorem 6.4.1.1(1)]).
We defineMKr to be the scheme over Mtor

K whose S-points classify the Bu
H (Zp)-

orbits ofOB ⌦ Zp-injections � : L+ ⌦µpr ,! A_[pr ]/S of group schemes with
image an isotropic subgroup scheme. We write MKr for its restriction over MK .
The group BH (Zp) acts on MKr on the right through its quotient TH (Zp/prZp).
We let MKr ,L be the pullback ofMKr overMtor

K ,L and let MKr ,L be the pullback over
MK ,L . Generally, the scheme MKr (respectively MKr ,L) is étale and quasifinite
but not finite over Mtor

K (respectively Mtor
Kr ,L). We continue to denote by sL the

inclusions MKr ,L ,! MKr and MKr ,L ,! MKr determined by these restrictions.
Let B+ ⇢ G/Zp be the Borel that stabilizes L+ and such that

B+ ⇣ Gm ⇥ BH ⇢ Gm ⇥ H, (13)

where the map to the first factor is the similitude character ⌫ and the map
to the second is projection to H . Let Bu ⇢ B+ be the unipotent radical. Let
I 0r ⇢ G(Zp) consist of those g such that g mod pr 2 B+(Zp/prZp), and let
Ir ⇢ I 0r consist of those g projecting under the surjection (13) to an element in
(Zp/prZp)

⇥ ⇥ Bu
H (Zp/prZp). Then I 0r /Ir

⇠
�! TH (Zp/prZp). The choice of

a basis of Zp(1) naturally identifies MKr /F (respectively MKr ,L) with MIr Kp
/F

(respectively MIr Kp,L /F = SIr Kp(G, XP)), and MKr /F (respectively MKr ,L /F )
is the normalization of Mtor

K /F (respectively Mtor
K ,L /F ) in MKr /F (respectively

MKr ,L/F). Since it should therefore cause no ambiguity, we also put Kr = Ir Kp.
We similarly put K 0

r = I 0r K
p.

Note that under the isomorphisms (9) and (10), B+ is identified with the group

B+ ⇠
�! Gm

⇥
Y

w2⌃p

mY

i=1

⇢✓
A B
0 D

◆
2 GLni (Ow) :

A 2 GLaw,i (Ow) is upper-triangular
D 2 GLbw,i (Ow) is lower-triangular

�
.

(14)

2.6. Modular forms. We define spaces of modular forms for the groups G
and various Hecke operators acting on them.

2.6.1. The groups G0 and H0. Let V = L⌦C. The homomorphism h defines a
pure Hodge structure V = V �1,0 � V 0,�1 of weight �1. Let W = V/V 0,�1. This
is defined over the reflex field F . Let ⇤0 ⇢ W be an OB-stable S⇤-submodule

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


E. Eischen, M. Harris, J. Li and C. Skinner 22

such that ⇤0 ⌦S⇤ C = W . Let ⇤_
0 = HomZ(p) (⇤0,Z(p)(1)) withOB ⌦ S⇤-action:

(b ⌦ s) f (x) = f (b⇤sx). Put ⇤ = ⇤0 � ⇤_
0 , and let h·, ·ican : ⇤ ⇥ ⇤ ! Z(p)(1)

be the alternating pairing

h(x1, f1), (x2, f2)ican = f2(x1) � f1(x2).

Note that⇤0 and⇤_
0 are isotropic submodules of⇤. Note also that theOB-action

on ⇤ is such that hbx, yican = hx, b⇤yican. Let G0 be the group scheme over S⇤
such that for any S⇤-algebra R

G0(R) =
⇢
(g, ⌫) 2 GLOB⌦R(⇤ ⌦S⇤ R) ⇥ R⇥ :

hgx, gyican = ⌫hx, yican,
8x, y 2 ⇤ ⌦S⇤ R

�
.

Let H0 ⇢ G0 be the stabilizer of the polarization ⇤ = ⇤0 � ⇤_
0 . The projection

H0 ! Gm ⇥ GLOB⌦S⇤(⇤
_
0 ) is an isomorphism (the projection to Gm is the

similitude factor ⌫). There is a canonical isomorphism V ⇠= ⇤⌦S⇤ C ofOB ⌦C-
modules that identifies V �1,0 with ⇤0 ⌦S⇤ C and V 0,�1 with ⇤_

0 ⌦S⇤ C and
the pairing h·, ·i with h·, ·ican, and so identifies G/C with G0/C. Let C ⇢ G/R
be the centralizer of the homomorphism h and set U1 = Uh := C(R). The
identification of G/C with G0/C identifies C(C) with H0(C).

2.6.2. The canonical bundles. Let A be the semiabelian scheme over Mtor
K as

in Section 2.5 and let A_ be the associated dual semiabelian scheme. Let ! be
the OMtor

K
-dual of LieMtor

K
A_. The Kottwitz determinant condition implies that !

is locally isomorphic to ⇤_
0 ⌦S⇤ OMtor

K
as an OB ⌦ OMtor

K
-module. Let

E = IsomOB⌦OMtor
K
((!,OMtor

K
(1)), (⇤_

0 ⌦S⇤ OMtor
K
,OMtor

K
(1))).

This is an H0-torsor over Mtor
K . Let ⇡ : E ! Mtor

K be the structure map. Let R
be an S⇤-algebra. An R-valued point f 2 E can be viewed as a functorial rule
assigning to a pair (A, ") over an R-algebra S an element f (A, ") 2 S. Here
A is a tuple classified by MK (S) and " is a corresponding element of E(S). We
let Er = E ⇥Mtor

K
MKr and let ⇡r : Er ! MKr be its structure map. Sections of

the bundle ⇡r,⇤OEr have interpretations as functorial rules of pairs (X , "), where
X = (A,�) is a tuple classified by MKr (S) and " is a corresponding element in
Er (S).

2.6.3. Representations of H0 over S0. Recall thatK0 is the Galois closure ofK,
and let p0 ⇢ OK0 be the prime determined by inclp. Let

S0 = S⇤ ⌦OF,(p) OK0,(p0).
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(So S0 = K0 if ⇤ = ; and S0 = OK0,(p0) if ⇤ = {p}.) The isomorphism O ⌦

S0
⇠

�!
Q

�2⌃K
S0, a ⌦ s 7! (� (a)s)�2⌃K

, induces a decomposition

OB ⌦ S0
0

⇠
�! OB ⌦O (O ⌦ S0)

⇠
�!

Y

�2⌃K

OB ⌦O,� S0 =
Y

�2⌃K

OB,� .

This in turn induces OB ⌦ S0 =
Q

�2⌃K
OB,� -decompositions ⇤0 ⌦ S0 =Q

�2⌃K
⇤0,� and ⇤_

0 ⌦ S0 =
Q

�2⌃K
⇤_

0,� . The pairing h·, ·ican identifies ⇤_
0,�c =

HomZ(p) (⇤0,� ,Z(p)(1)).
Since S0 is a PID, ei⇤0,� and ei⇤_

0,� are free S0-modules, of respective ranks
a�,i and b�,i . We fix an S0-basis of ei⇤0,� . By duality, this determines an S0-basis
of ei⇤_

0,�c. This yields an isomorphism

H0/S0
⇠

�! Gm ⇥
Y

�2⌃K

mY

i=1

GLOi⌦O,� S0
0
(ei⇤_

0,� )
⇠= Gm ⇥

Y

�2⌃K

mY

i=1

GLb�,i (S0).

(15)
Let BH0 ⇢ H0/S0 be the S0-Borel that corresponds via the isomorphism (15)

to the product of the lower-triangular Borels. Let TH0 ⇢ BH0 be the diagonal
torus and let Bu

H0
⇢ BH0 be the unipotent radical. We say that a character  of

TH0 that is defined over an S0-algebra R is a dominant character of TH0 if it is
dominant with respect to the opposite (so upper-triangular) Borel Bop

H0
. Via the

isomorphism (15), the characters of TH0 can be identified with the tuples  = (0,
(�,i)�2⌃K,16i6m), 0 2 Z and �,i = (�,i, j) 2 Zb�,i , and the dominant characters
are those that satisfy

�,i,1 > · · · > �,i,b�,i , 8� 2 ⌃K, i = 1, . . . ,m. (16)

The identification is just

(t) = t00 ·
Y

�2K

mY

i=1

b�,iY

j=1

t�,i, j
�,i, j ,

t = (t0, (diag(t�,i,1, . . . , t�,i,b�,i ))�2⌃K,16i6m) 2 TH0 .

Given a dominant character  of TH0 over an S0-algebra R, let

W(R) = {� : H0/R ! Ga : �(bh) = (b)�(h), b 2 BH0},

where  is extended trivially to Bu
H0
. If R is a flat S0-algebra then this is an

R-model of the irreducible algebraic representation of H0 of highest weight 
with respect to (TH0, B

op
H0
). Let w 2 W (TH0, H0/S0) be the longest element in the

Weyl group and let _ be the dominant character of TH0 defined by _(t) =
(w�1t�1w). The dual

W_
 (R) = HomR(W(R), R)
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is, for a flat S0-algebra R, an R-model of the representation with highest
weight _.
The submodule W(R)

Bu
H0 is a free R-module of rank one spanned by � , the

function with support containing the big cell BH0wBH0 (and equal to the big cell
if  is regular) and such that �(wBu

H0
) = 1; w� is a highest weight vector.

The module W_
 is generated over R as an H0-representation by the functional

` = (evaluation at 1); w` is a highest weight vector. Also,

HomH0(W
_
 (R),W_(R)) = R

with basis the homomorphism that sends ` to �_ . (For all this, see [Hid04,
Section 8.1.2], and the text of Jantzen cited there.)
For future reference, we also note that via the isomorphism (15) the

identification of C(C) with H0(C) identifies

U1 = C(R) ⇠
�! {(h0, (h� )�2⌃K

) 2 H0(C) : h0 2 R⇥, h0
th̄�1

� = h� }, (17)

where the ‘¯’ denotes complex conjugation on C. That is, U1 is identified with
the subgroup of the product

Q
�2⌃K

GU+(b� ) of full unitary similitude groups
(see Section 1.4) in which all the similitude factors agree.

2.6.4. The modular sheaves. Let R be a S0-algebra and  a dominant R-
character of TH0 . Let

!,M = ⇡⇤OE [] and !r,,M = ⇡r,⇤OEr []

be the subsheaf of the quasicoherent sheaf ⇡⇤OE on Mtor
K /R and MKr /R ,

respectively, on which BH0 acts via  . (See [Hid04, Sections 8.1.2 and 8.1.3],
for this construction.) We let

! = sL ,⇤s⇤
L!,M and !r, = sL ,⇤s⇤

L!r,,M . (18)

These are the respective restrictions to the toroidal compactifications of the
Shimura varieties MK ,L/R and MKr ,L/R of the sheaves !,M and !r,,M , extended
by zero to the full moduli space. We will use the same notation to denote the
restriction of these sheaves over MK ,L and MKr ,L .

2.6.5. Modular forms over S0 of level K . Let R be a S0-algebra. The R-module
of modular forms (on G) over R of weight  and level K is

M(K ; R) = H 0(Mtor
K ,L /R,!).

The Köcher principle [Lan16] and the definition (18) implies that

M(K ; R) = H 0(MK ,L /R,!) (19)

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


p-adic L-functions for unitary groups 25

except when F0 = Q and Gder/Q has an irreducible factor isomorphic to SU(1,
1). However, in this exceptional case the toroidal compactifications are the same
as the minimal compactification and therefore canonical; we leave it to the reader
to make the necessary adjustments to our arguments in this case (or to find
them in the literature). We will generally refrain from referring explicitly to this
exception.
By (19), a modular form f 2 M(K ; R) can be viewed as a functorial rule

assigning to a pair (A, "), over an R-algebra S, that is an S-valued point of
the Shimura variety MK ,L , an element f (A, ") 2 S and satisfying f (A, b") =
(b) f (A, ") for b 2 BH0(S).
Let D1 be the Cartier divisor Mtor

K �MK , equipped with its structure of reduced
closed subscheme. The R-module of cusp forms (on G) over R of weight  and
level K is the submodule

S(K ; R) = H 0(Mtor
K /R,!(�D1))

of M(K ; R). It follows from [Lan17, Proposition 7.5] that S(K ; R) is
independent of the choice of toroidal compactification.

2.6.6. Modular forms over S0[ ] with Nebentypus  . Let  : TH (Zp) ! Q⇥

be a character factoring through TH (Zp/prZp). Suppose R is an algebra over
S0[ ], the ring obtained by adjoining the values of to S0 (we use the analogous
notation without comment below). We define the R-module of modular forms
(on G) over R of weight  , level Kr , and character  to be

M(Kr , ; R) = { f 2 H 0(MKr /R,!r,) : t · f =  (t) f 8t 2 TH (Zp)}.

It follows from [Lan16, Remark 10.2] that the Köcher principle applies and we
have

M

✓
Kr , ; R


1
p

�◆

=
n
f 2 H 0

⇣
MKr /R

h
1
p

i,!r,

⌘
: t · f =  (t) f 8t 2 TH (Zp)

o
. (20)

(We ignore the exceptional case when F0 = Q and Gder/Q contains a factor
isomorphic to SU(1, 1). On the other hand, we are using the fact that the MKr we
have defined here is a special case of the ordinary locus of [Lan18].) A section
f 2 M(Kr , ; R) can be interpreted as a functorial rule assigning to a pair
(X , "), over an R-algebra S, that is an S-valued point of the Shimura variety
MKr ,L , an element f (X , ") 2 S, where X = (A,�), satisfying f (A,� � t, b") =
 (t)(b) f (X , ") for all t 2 TH (Zp) and b 2 BH0(S).
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We similarly define the submodule of cusp forms of character  to be

S(Kr , ; R) = { f 2 H 0(MKr /R,!r,(�D1,r )) : t · f =  (t) f 8t 2 TH (Zp)}.

Here D1,r is the Cartier divisor D1,r := MKr � MKr with the structure of a
reduced closed subscheme (cf. [Lan18, Theorem 5.2.1.1(3)]).

2.6.7. The actions of G(A⇤
f ) and G(Ap

f ). The action of G(A⇤
f ) on {Mtor

K }K⇤

gives an action of G(A⇤
f ) on

lim
�!
K⇤

M(K ; R) and lim
�!
K⇤

S(K ; R).

Similarly, the action of G(Ap
f ) extends to an action on {MKr }Kp , giving an action

of G(Ap
f ) on

lim
�!
Kp

M(Kr , ; R) and lim
�!
Kp

S(Kr , ; R).

The submodules fixed by K⇤ (respectively Kp) are just the modular forms and
cusp forms of weight  and level K (respectively prime-to-p level Kp). (Here
we are using the fact that the toroidal compactifications are normal schemes over
Spec(R); see [Lan17, Proposition 7.5].)

2.6.8. Hecke operators away from p. Let K j = G(Zp)K
p
j ⇢ G(A f ), j = 1, 2,

be neat open compact supgroups. For g 2 G(Ap
f ) we define Hecke operators

[K2gK1] : M(K1; R) ! M(K2; R),
[K2,r gK1,r ] : M(K1,r , ; R) ! M(K2,r , ; R)

(in the obvious notation) through the action of G(Ap
f ) on the modules of modular

forms:
[K2,r gK1,r ] f =

X

g j

[g j ]
⇤ f, K p

2 gK
p
1 =

G

g j

g j K
p
1 . (21)

In particular,

([K2,r gK1,r ] f )(A, �, ◆,↵K
p
2 ,�, ") =

X

g j

f (A, �, ◆,↵g j K
p
1 ,�, "). (22)

These actions map cusp forms to cusp forms.
When K2 = K1 is understood we write T (g) instead of [K1gK1] and Tr (g) =

[K1,r gK1,r ]; we drop the subscript r when that is also understood.
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2.6.9. Hecke operators at p. If p is invertible in R (so R is a Qp-algebra) we
define Hecke operators T (g) = [KgK ] and Tr (g) = [KrgKr ] on the spaces of
modular forms and cusp forms over R just as we did in 2.6.8. We single out some
particular operators: for w 2 ⌃p, 1 6 i 6 m, 1 6 j 6 ni , we let t+w,i, j 2 B+(Qp)
be the element identified via (14) with (1, (tw0,i 0, j)) where

tw0,i 0, j =

8
><

>:

diag(p1 j , 1n� j) w = w0, i = i 0, j 6 aw,
diag(p1aw , 1n� j , p1 j�aw) w = w0, i = i 0, j > aw,
1n otherwise.

Note that t+w,i, j has the property that

t+w,i, j I
0
r t

+,�1
w,i, j ⇢ I 0r .

Let t�w,i, j = (t+w,i, j)
�1. We put

Uw,i, j = Kr t+w,i, j Kr , U�
w,i, j = Kr t�w,i, j Kr (23)

Hida has shown that these Hecke operators can even be defined on p-adic
modular forms and cusp forms when p is not a zero divisor but not necessary
invertible (see Section 2.9.5).

REMARK 2.6.10. To define the actions of these Hecke operators on higher
coherent cohomology of automorphic vector bundles it is necessary to use
the class of smooth projective polyhedral cone decompositions used to define
toroidal compactifications in [Lan13, Lan18]. For holomorphic forms this is
generally superfluous because of the Köcher principle [Lan16].

2.6.11. Comparing spaces of modular forms of different weight. Given an
integer a, let a be the weight a = (a, (0)). We define a modular form
fa 2 Ma (K ; R) by the rule fa(A, ") = �a , where (A, ") is a pair over an R-
algebra S and the isomorphism from S(1) to itself induced by " is multiplication
by � 2 S⇥.
Let  = (0, (�,i)) be a weight, and put  0 = (0 + a, (�,i)). Then there are

isomorphisms

M(K ; R)
f 7! fa · f
! M 0(K ; R) and M(Kr , ; R)

f 7! fa · f
! M 0(Kr , ; R).

These maps induce isomorphisms on spaces of cusp forms, and the Hecke
operators T (g) satisfy

fa · T (g) f = k⌫(g)kaT (g)( fa · f ).
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2.7. Complex uniformization. We relate the objects defined so far to the
usual complex analytic description of modular forms on Shimura varieties. For
the identification of the adelic double coset spaces with the sets of complex
points we refer to [Kot92, Section 8].

2.7.1. The spaces. Let X be the G(R)-orbit under conjugation of the
homomorphism h. Recall that the stabilizer of h is the group U1 = C(R),
so there is a natural identification G(R)/C(R) ⇠

�! X , g 7! ghg�1, which
gives X the structure of a real manifold. Let P0 ⇢ G0 be the stabilizer of ⇤0.
Via the identification of G/C with G0/C, which identifies C(C) with H0(C), X
is identified with an open subspace of G0(C)/P0(C), which gives X a complex
structure. There are natural complex analytic identifications

MK ,L(C) =G(Q)\X ⇥ G(A f )/K
MKr ,L(C) =G(Q)\X ⇥ G(A f )/Kr ,

(24)

where the class of (h0, g) 2 X ⇥ G(A f ), with gp 2 G(Zp), corresponds to the
equivalence class of the tuple Ah0,g = (Ah0, �h0, ◆, ⌘g) (or Xh0,g = (Ah0,g,�g))
consisting of:

• the abelian variety Ah0 = (L ⌦ R)/L with the complex structure on L ⌦ R
being that determined by h0; its dual abelian variety is A_

h0 := (L ⌦ R)/L#,
where again L ⌦ R has the complex structure defined by h0 and where L# =
{x 2 L ⌦ R : hx, Li ✓ Z(1)};

• �h0 : Ah0 ! A_
h0 is the isogeny induced by the identity map on L ⌦ R;

• ◆ is induced from the canonical action of OB on L;

• ⌘g is the Kp-orbit of the translation by g map gp : L ⌦ Ap
f

⇠
�! L ⌦ Ap

f =
H1(Ah0,Ap

f );

• in the case of MKr ,L , �g is the Bu
H (Zp)-orbit of the map L+ ⌦µpr ,!

A_
h0[pr ] = 1

pr L
#/L# = (L# ⌦ Zp)/(pr L# ⌦ Zp), v ⌦ e2⇡

p
�1/pr 7!

gpv mod (pr L# ⌦ Zp).

Here we are using that the simple factors of Gder
/R are all of type A (see [Kot92,

Sections 7–8] for how this enters into the identifications (24)).

2.7.2. Classical modular forms. The dual of the Lie algebra of A_
h0 is !A_

h0
=

HomC(L ⌦R,C) with the complex structure on L ⌦R being that determined by
h0. Recalling that L ⌦R ⇠

�! W = ⇤0 ⌦S0 C is a C-linear isomorphism for the
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complex structure on L ⌦ R determined by h, we find that there is a canonical
OB ⌦ C-identification "0 : !A_

h

⇠
�! ⇤_

0 ⌦S0 C. If h0 = ghg�1, then "h0(�) =
"0(g�1�) is anOB ⌦C-identification of !A_

h0
with ⇤_

0 ⌦S0 C. The complex points
of the H0-torsors E/MK ,L and Er/MKr ,L are then given by

E(C) =G(Q)\G(R) ⇥ H0(C) ⇥ G(A f )/U1K
Er (C) =G(Q)\G(R) ⇥ H0(C) ⇥ G(A f )/U1Kr ,

(25)

with the class of (g, x, g f ) 2 G(R) ⇥ H0(C) ⇥ G(A f ) corresponding to the
classes of

(Aghg�1,g f
, (x"0(g�1·), ⌫(x)))

and
(Xghg�1,g f

, (x"0(g�1·), ⌫(x))),
respectively.
As C is a Zp-algebra via ◆p, a weight  modular form over C is therefore

identified with a smooth function ' : G(A) ⇥ H0(C) ! C such that '(� guk,
bxu) = (b)'(g, x) for � 2 G(Q), g 2 G(A), x 2 H0(C), u 2 U1, b 2 BH0(C),
and k 2 K or Kr . The space

W(C) = {� : H0(C) ! C : � holomorphic,�(bx) = (b)�(x) 8b 2 BH0(C)}
is the irreducible C-representation of H0 of highest weight  with respect to
(TH0, B

op
H0
) (this is the Borel–Weil theorem), so a weight  modular form is also

identified with a smooth function f : G(A) ! W(C) such that f (� guk) =
u�1 f (g) for � 2 G(Q), u 2 U1, and k 2 K or Kr . Here U1 acts on W(C) as
u�(x) = �(xu). The connection between f and ' is f (g)(x) = '(g, x). The
condition that the modular form is holomorphic can be interpreted as follows.
Let g = Lie(G(R))C, and let g = p� � k � p+ be the Cartan decomposition for
the involution h(

p
�1): ad h(

p
�1) acts as ±

p
�1 on p±. The identification of

G(C) with G0(C) identifies Lie(P0(C)) with k � p+, and so f corresponds to a
holomorphic form if and only if p� ⇤ f = 0.
Let  : TH (Zp) ! Q⇥

be a finite character that factors through TH (Zp/prZp).
The condition that a modular form have character becomes f (gt) =  (t) f (g)
for all t 2 TH (Zp), where the action of t comes via (13).

2.7.3. Hecke operators. The actions of the Hecke operators in 2.6.8 and 2.6.9
correspond to the following actions on the functions f : G(A) ! W(C): the
action of [K2gK1] is just

f (g) 7!
X

g j

f (gg j), K2gK1 =
G

g j K1, (26)

and similarly with Ki replaced by Ki,r .
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2.8. Igusa towers. Let ⇤ = {p}. Recall A and ! from Section 2.6.2. Recall
that the hypothesis (2.2.1) implies that the completion of inclp(S⇤) is Zp; in this
way we consider Zp an S⇤-algebra. Let k > 0 be so large that the kth-power of
the Hasse invariant has a lift to a section E 2 Mdetk (K ;Zp). (See [Lan18, Section
6.3.1] for the definition of the Hasse invariant on the toroidal compactification.)
Put

Sm = Mtor
K ,L


1
E

�

/Zp/pmZp

.

Let S0
m = MK ,L[

1
E ]/Zp/pmZp ; this is an open subscheme of Sm , and S1 is dense

in the special fiber of Mtor
K ,L (this follows from our hypotheses on the moduli

problem and the discussion in [Lan18, Section 6.3.3]). For n > m let Tn,m/Sm

be the finite étale scheme over Sm [Hid04, Section 8.1.1] such that for any Sm-
scheme S

Tn,m(S) = IsomS(L+ ⌦ µpn ,A
_[pn]�),

where the superscript � denotes the identity component and the isomorphisms are
of finite flat group schemes over S with OB ⌦ Zp-actions. The scheme Tn,m is
Galois over Sm with Galois group canonically isomorphic to H(Zp/pnZp). The
collection {Tn,m}n is called the Igusa tower over Sm .

2.9. p-adic modular forms. Let Dn,m be the preimage of Dm = Sm � S0
m

(with reduced closed subscheme structure) in Tn,m (the preimage is also reduced
because the morphism is étale). For a p-adic ring R (that is, R = lim

 �m
R/pm R),

let

Vn,m(R) = H 0(Tn,m/R,OTn,m ) and V cusp
n,m (R) = H 0(Tn,m/R,OTn,m (�Dn,m)).

The group H(Zp) acts on each through its quotient H(Zp/pnZp), the Galois
group of Tn,m/Sm . The R-module of p-adic modular forms (for G) over R of
level Kp is

V (Kp, R) = lim
 �
m

lim
�!
n

Vn,m(R)B
u
H (Zp),

and the R-module of p-adic cusp forms (for G) over R of level Kp is

V (Kp, R)cusp = lim
 �
m

lim
�!
n

V cusp
n,m (R)B

u
H (Zp).

The group TH (Zp) = BH (Zp)/Bu
H (Zp) acts on these modules.

A p-adic modular form over R can be viewed as a functorial rule that assigns
an element of a p-adic R-algebra S to each tuple (A,�) over S, where A =
(Am) 2 lim

 �
Sm(S) and � = (�n,m) 2 lim

 �m
lim
 �n

Tn,m(S) with each �n,m over Am .
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2.9.1. p-adic modular forms of weight  and character  . Let L0 ⇢ Qp be the
extension of Qp generated by the images of all the embeddings of K into Qp,
and let O0 be its ring of integers. Let

 = (�,i)�2⌃K,16i6m, �,i 2 Za�,i .

We denote also by  the O0-valued character of TH (Zp) defined by

(t) =
Y

w|p

Y

�2⌃K

p�=pw

mY

i=1

a�,iY

j=1

� (tw,i, j)
�,i, j ,

t = (diag(tw,i,1, . . . , tw,i,aw,i ))w|p,16i6m 2 TH (Zp).

If : TH (Zp) ! Qp
⇥
is a finite-order character, then we define anO0[ ]-valued

character  of TH (Zp) by  (t) =  (t)(t). For R a p-adic ring that is also an
O0[ ]-algebra, the spaces of p-adic modular forms and cusp forms of weight 
and character  are

V(Kp, , R) = { f 2 V (Kp, R) : t · f =  (t) f 8t 2 TH (Zp)}

and

V cusp
 (Kp, , R) = { f 2 V cusp(Kp, R) : t · f =  (t) f 8t 2 TH (Zp)}.

As a functorial rule, a p-adic modular form of weight  and character  satisfies
f (A,� � t) =  (t) f (A,�) for all t 2 TH (Zp).

2.9.2. The action of G(Ap
f ). The action of G(Ap

f ) on {Mtor
K ,L/R

}Kp induces an
action on {Sm}Kp and on {Tn,m}n,Kp , and these actions give an action of G(Ap

f ) on

lim
 �
Kp

V (Kp, R) and lim
 �
Kp

V(Kp, , R)

and on their submodules of cusp forms. Indeed, while the lift E is not necessarily
a Hecke eigenform, its reduction mod p is invariant under G(Ap

f ). This implies
that the spaces of p-adic modular forms do not depend on the choice of
lift. (See [Lan18], especially Sections 8.1.4 and 8.3.6, for a more canonical
construction of this action.)
The submodules fixed by Kp are just the p-adic modular forms and cusp forms

of weight  and prime-to-p level Kp. (Here we are using the fact that the Igusa
varieties are normal schemes over Spec(R); see [Lan18, Theorem 5.2.1.1].)
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2.9.3. Hecke operators away from p. Let K p
j ⇢ G(Ap

f ), j = 1, 2, be neat open
compact supgroups. For g 2 G(Ap

f )we define a Hecke operator [K
p
2 gK

p
1 ] on the

spaces of p-adic modular forms and cusp forms just as in Section 2.6.8.

2.9.4. Modular forms as p-adic modular forms. Let ⇤ = {p}. Under
Hypothesis 2.2.1, the completion of inclp(S(p)) is Zp, so inclp identifies Zp

as an S(p)-algebra and O0 as an S0-algebra. As OB ⌦ Z(p) = O
m
(p), we have

OB⌦O
0 = (O(p)⌦O

0)m =
Y

w|p

mY

i=1

Ow⌦O
0 ⇠

�!
Y

w|p

Y

�2⌃K

p�=pw

mY

i=1

O =
Y

�2⌃K

mY

i=1

O
0.

The choices in Sections 2.6.3 and 2.2 induce OB ⌦ O0-decompositions

⇤0 ⌦S⇤ O
0 =

Y

�2⌃K

mY

i=1

ei⇤0,� ⌦S0 O
0 =

Y

�2⌃K

mY

i=1

(O0)a�,i

and

L+ ⌦Zp O
0 =

Y

w|p

mY

i=1

ei Lw ⌦Zp O
0 =

Y

w|p

mY

i=1

(Ow ⌦Zp O
0)aw,i

=
Y

w|p

Y

�2⌃K

p�=pw

mY

i=1

(O0)a�,i .

Equating these identifications yields an OB ⌦ O0-identification ⇤0 ⌦S⇤ O0 =
L+ ⌦Zp O0. Recalling that H0 ⇢ G0 is the stabilizer of the polarization ⇤ =

⇤0 � ⇤_
0 and hence that H0/O0

⇠
�! Gm ⇥ GLOB⌦O0(⇤0 ⌦S⇤ O0), this then

determines an isomorphism

H0/O0
⇠

�! Gm ⇥ H/O0

which is given explicitly in terms of (12) and (15) by

H0/O0 3 (⌫, (g�,i)�2⌃K
) 7!

✓
⌫,

✓ Y

�2⌃K

p�=pw

⌫ · tg�1
�c,i

◆

w|p

◆
2 Gm ⇥ H/O0, (27)

where we have used the identification

GLr (Ow ⌦Zp O
0)

⇠
�!

Y

�2⌃K,p�=pw

GLr (O
0).

This identifies BH0 /O0 = Gm⇥BH /O0 , Bu
H0 /O0 = Bu

H /O0 , and TH0 /O0 = Gm⇥TH /O0 .
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To each weight  = (0, (�,i)) as in (2.6.3), we associate a p as in 2.9.1:

p = (�c,i).

Note that �c,i 2 Zb�c,i = Za�,i . If t 2 TH (Zp), t = (diag(tw,i,1, . . . , tw,i,aw,i ), then

p(t) =
Y

w|p

Y

�2⌃K

p�=pw

mY

i=1

aw,iY

j=1

� (tw,i, j)
�c,i, j .

Note that if x = (t0, t) 2 Z⇥
p ⇥ TH (Zp) ⇢ TH0(O

0), then

(x) = t c00 p(t�1), c0 = 0 +
X

�,i, j

�,i, j .

As we explain in the following, for  : TH (Zp) ! Qp a finite-order character
and R a p-adic O0[ ]-algebra, if  satisfies the inequalities (16), then the
modular forms over R of weight  and character  are p-adic modular forms
of weight  and character  .
FixingGm = Spec(Z[x, 1

x ]) as usual yields an identification µpn = Spec(Z[x,
1
x ]/(x

pn � 1)) for each n > 1, and hence an identification LieZp(µpn ) = Zx d
dx .

For any scheme S, this identifies LieS(µpn ) with OS , compatibly as n varies. If
n > m, S is a Zp/pmZp-scheme, and � 2 Tn,m(S), then this identification gives
an isomorphism

Lie(�) : L+ ⌦ OS = L+ ⌦ LieS(µpn )
⇠

�! LieS(A_
/S[p

n]�) = LieSA_
/S.

The identification ⇤0 ⌦ Zp = L+ gives (Lie(�)_, id) 2 En(S). If f 2 M(Kr ,
 ; R) for R a p-adic O0[ ]-algebra, then the value of the p-adic modular form
f p-adic determined by f on a (p-adic) test object (A,�) over a p-adic R-algebra
S is

f p-adic(A,�) = lim
 �
m

f (Am,�m,m,r , (Lie(�m,m,r )
_, id)) 2 lim

 �
m

S/pmS = S,

where for n > max{r,m}, �n,m,r is the isomorphism L+ ⌦ µpr
⇠

�! A_
/S[p

r ]�

determined by �n,m . If t 2 TH (Zp) then Lie(� � t)_ = t�1 · Lie(�)_, so

(t · f p-adic)(A,�)
= lim

 �
f (Am,�m,m,t � t, (Lie(�m,m � t)_, id)) =  (t)p(t) f p-adic(A,�),

hence f p-adic is a p-adic modular form of weight p and character  . Clearly,
if f is a cusp form, then f p-adic is a p-adic cusp form. (A modular form can
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be a p-adic cusp form but not be cuspidal. A simple example is the critical p-
stabilization E⇤

2k(z) = E2k(z)� E2k(pz) of the level 1 weight 2k > 4 Eisenstein
series E2k .) Also, the corresponding R-module homomorphisms

M(Kr , ; R) ,! Vp(K
p, , R) and S(Kr , ; R) ,! V cusp

p
(Kp, , R)

(28)
—these are injective because, as already noted, S1 is dense in the special fiber of
Mtor

K ,L—are compatible with Hecke operators in the sense that

(T (g) · f )p-adic = k⌫(g)k�0T (g) · f p-adic (29)

for g 2 G(Ap
f ).

Note that if  0 = (0+a, (�,i)), then  0
p = p. Furthermore, for f 2 M(K ; R)

and f 0 = fa f 2 M 0(K ; R) (see 2.6.11),

f p-adic = f 0
p-adic.

2.9.5. Hecke operators at p. Hida [Hid04, 8.3.1] has defined an action of the
double cosets uw,i, j = Bu

H (Zp)tw,i, j Bu
H (Zp) on the modules of p-adic modular

forms and cusp forms; this action is defined via correspondences on the Igusa
tower (see also [SU02]). Moreover, as Hida shows, if R is a p-adic domain in
which p is not zero,  as in Section 2.9.1, and f 2 M(Kr , ; R), then uw,i, j · f 2
M(Kr , ; R) and

uw,i, j · f = |norm(tw,i, j)|
�1
p Uw,i, j · f, norm = (�,i 0 � b�,i 0). (30)

We put

u p =
Y

w2⌃p

mY

i=1

niY

j=1

uw,i, j

and define a projector
e = lim

�!
n

un!
p . (31)

2.9.6. Ordinary forms. Let R be a p-adic ring. The submodules of ordinary
p-adic forms over R are

V ord(Kp, R) = eV (Kp, R), and V ord,cusp(Kp, R) = eV cusp(Kp, R),

and those of weight  and character  are

Mord
 (Kr , ; R) = eM(Kr , ; R), Sord

 (Kr , ; R) = eS(Kr , ; R),
V ord

p
(Kp, , R) = eVp(K

p, , R), V ord,cusp
p

(Kp, , R) = eV cusp
p

(Kp, , R).
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Hida’s classicality theorem for ordinary forms establishes that if R is a finite
O0[ ]-domain (respectively a finite O0-domain) then

V ord,cusp
p

(Kp, , R) = Sord
 (Kr , ; R)

(respectively V ord,cusp
p

(Kp, R) = Sord
 (Kr ; R))

if �,i,a�,i + �c,i,b�,i � niri 8� 2 ⌃K, 1 6 i 6 m.

(32)

This theorem (with more precise inequalities on �,i,a�,i + �c,i,b�,i ) is proved
in [Hid04,Hid02] assuming conditions denoted (G1)–(G3) (see [Hid02, Section
7]), which were subsequently proved by Lan in [Lan13]. (Theorem 6.4.1.1
of [Lan13] contains (G2) and part of (G1). The remaining (projectivity) assertion
in (G1) is contained in [Lan13, Theorem 7.3.3.4]. Condition (G3) is proved
in [Lan13, Section 7.2.3].) Let R be as in Equation (32) and let O+ denote
the integral closure of Z(p) in R. The fraction field Frac(O+) of O+ is a number
field over which S(Kr , ; R) ⌦ Q has a rational model, given by the space
of Frac(O+)-rational cusp forms of type  and level Kr . The intersection of
this space with Sord

 (Kr , ; R) is an O+-lattice Sord
 (Kr , ; O+). Given any

embedding ◆ : O+ ,! C, the image of Sord
 (Kr , ; O+) in the space S(Kr ,

 ;C) will be called the space of ordinary complex cusp forms (relative to ◆) of
type  and level Kr .

2.10. Measures and ⇤-adic families. We recall p-adic measures and their
connections with Hida’s theory of ⇤-adic modular forms.

2.10.1. p-adic measures. Let R be a p-adic ring. The space of R-valued
measures on TH (Zp) is

Meas(TH (Zp); R) = HomZp(C(TH (Zp),Zp), R),

where C(TH (Zp),Zp) is the Zp-module of continuous Zp-valued functions on
TH (Zp). Note that C(TH (Zp), R) = C(TH (Zp),Zp) ⌦̂Zp R, so we also have

Meas(TH (Zp); R) = HomR(C(TH (Zp), R), R).

More generally, if M is a complete R-module we can define the R-module of
M-valued measures in the same way. The R-module of M-valued measures is
naturally identified with R[[TH (Zp)]] ⌦̂R M ; the identification of a measure µ
with an element f of the completed group ring is such that for any continuous
homomorphism � : TH (Zp) ! R⇥, µ(�) = �( f ), where �( f ) is the image of
f under the homomorphism R[[TH (Zp)]] ! R induced by � .
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2.10.2. ⇤-adic forms. Let

⇤H = O
0[[TH (Zp)]].

Both V (Kp, R) and V cusp(Kp, R), R a p-adic O0-algebra, are ⇤H -modules
via the actions of TH (Zp) on them. A ⇤H -adic modular form over R is a
µ 2 Meas(TH (Zp); V (Kp; R)) such that µ(t · f ) = t · µ( f ) for all t 2 ⇤H .
In particular, it follows that if R is an O0[ ]-algebra, then µ( ) 2 V(Kp,
 , R). A ⇤H -adic cusp form is defined in the same way, replacing the p-adic
modular forms with cusp forms. Similarly, an ordinary ⇤H -adic modular form
or cusp form is also defined in the same way, replacing the modular forms and
cusp forms with the ordinary forms. Clearly, if µ is a ⇤-adic modular form,
then eµ (the composition of µ with the R-linear projector V (Kp, R) ! eV (Kp,
R) = V ord(Kp, R)) is an ordinary ⇤H -adic form. Let

S
ord(Kp, R)
= {ordinary ⇤H -adic cusp forms µ 2 Meas(TH (Zp); V ord,cusp(Kp, R))}.

The Hecke operators in 2.9.3 and 2.9.5 act on Sord(Kp, R) through their actions
on V ord,cusp(Kp, R).
Let � ⇢ TH (Zp) be the torsion subgroup. Since p is unramified in K by

hypothesis, (12) induces an identification

�
⇠

�!
Y

w|p

mY

i=1

(k⇥
w)

aw,i

where kw is the residue field of Ow. In particular, � has order prime-to-p,
so Sord(Kp, R) decomposes as a direct sum of isotypical pieces for the O0-
characters ! 2 �̂ of �:

S
ord(Kp, R) =

M

!2�̂

S
ord
! (Kp, R).

Let W ⇢ TH (Zp) be a free Zp-submodule such that TH (Zp) is isomorphic to
� ⇥ W . Then ⇤H = O0[[� ⇥ W ]] = ⇤o[�], where

⇤o = O
0[[W ]].

Each Sord
! (Kp, R) is a ⇤-module.

Let R ⇢ Qp be a finite O0-algebra and let

⇤o
R = ⇤o ⌦O0 R = R[[W ]].
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Theorem 7.1(5) of Hida’s paper [Hid02] asserts (again, under conditions (G1)–
(G3), which were proved in [Lan13]) that

S
ord
! (Kp, R) is a free ⇤o

R-module of finite rank, (33)

and for any finite character  : W ! Q⇥

p trivial on W pr�1 and  as in 2.9.1
satisfying the restriction in (32),

(Sord
! (Kp, R) ⌦R R[ ])/p S

ord
! (Kp, R) ⌦R R[ ]

µ7!µ( )
�����! Sord

 (Kr ,!! , R[ ]) (34)

is an isomorphism, where p is the kernel of the homomorphism ⇤o
R ⌦R

R[ ] ! R[ ] induced by the character  and ! 2 �̂ is |�.

REMARK 2.10.3. Clearly, one can include types (that is, irreducible
representations WS of compact open subgroups of KS ⇢ Kp, for some finite set
S of primes) in the definition of ⇤-adic cusp forms, and we write the module
of ⇤-adic cusp forms of type WS as Sord(Kp,WS, R). It can be shown that the
analogues of the maps (34) in this context are also isomorphisms, using the fact
that p is generated by a regular sequence.

3. The PEL data and restriction of forms

In this section, we discuss restrictions of modular forms from a larger unitary
group to a product of unitary groups, which is important for interpreting the
doubling method (first introduced in Section 4.1) geometrically.

3.1. The PEL data. Let P = (K, c,O, L , h·, ·i, h) be a PEL datum of
unitary type associated with a hermitian pair (V, h·, ·iV ) as in Sections 2.1, 2.2,
and 2.3, together with all the associated objects, choices, and conventions from
Section 2. In particular, the index m equals 1. In what follows we will consider
four unitary PEL data Pi = (Bi , ⇤i ,OBi , Li , h·, ·ii , hi) together with OBi ⌦ Zp

decompositions Li ⌦ Zp = L+
i � L�

i :

• P1 = P = (K, c,O, L , h·, ·i, h), L±
1 = L±;

• P2 = (K, c,O, L ,�h·, ·i, h(·̄)), L±
2 = L⌥;

• P3 = (K⇥K, c⇥c,O⇥O, L1 � L2, h·, ·i1 �h·, ·i2, h1 �h2), L±
3 = L±

1 � L±
2 ;

• P4 = (K, c,O, L3, h·, ·i3, h3), L±
4 = L±

3 .
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Given the hypotheses, there should be no confusion with the subscript ‘i’ being
used in this section for the objects associated to the PEL datum Pi .
The reflex fields for P1, P2 and P3 are all equal to the reflex field F of

P . The reflex field of P4 is Q. We put Gi = GPi for i = 1, . . . , 4 and
Hi = GLOBi ⌦Zp(L

+
i ). Then G1 = G2 and there are obvious, canonical inclusions

G3 ,! G4 and G3 ,! G1 ⇥ G2 which induce the obvious, canonical inclusions
H3 ,! H4 and H3 ,! H1 ⇥ H2. For K ⇢ Gi(A f ) a neat open compact with
K = Gi(Zp)K⇤ if ⇤ = {p}, let Mi,K = MK (Pi) be the moduli scheme over S⇤.
The choice of theOw-decomposition of L±

w determinesOBi ,w-decompositions
of the modules L±

i,w = Li ⌦O⌦Zp Ow and so determines isomorphisms

Gi /Zp

⇠
�! Gm ⇥

Y

w2⌃p

8
><

>:

GLn(Ow) i = 1, 2,
GLn(Ow) ⇥ GLn(Ow) i = 3,
GL2n(Ow) i = 4,

(35)

and

Hi /Zp

⇠
�!

Y

w|p

8
>>><

>>>:

GLaw(Ow) i = 1,
GLbw(Ow) i = 2,
GLaw(Ow) ⇥ GLbw(Ow) i = 3,
GLn(Ow) i = 4.

(36)

The canonical inclusions in the preceding paragraph just correspond to the
identity map on the similitude factors and the obvious inclusions of the GL-parts
(being the diagonal map in the case of the inclusions G3 ,! G4 and H3 ,! H4).
Let K⇤

i ⇢ Gi(A⇤
f ) be neat open compact subgroups. Let Ki = K⇤

i if ⇤ = ;
and Ki = Gi(Zp)K⇤

i otherwise. If K⇤
3 ⇢ K⇤

4 \ G3(A⇤
f ), then there is a natural

S⇤-morphism

M3,K3 ! M4,K4, A = (A, �, ◆,↵) 7! A4 = (A, �, ◆ � diag,↵K⇤
4 ), (37)

where diag : K ,! K � K is the diagonal embedding. Let ei 2 O � O, i = 1,
2, be the idempotent corresponding to the projection to the i th factor. If K⇤

3 ⇢
(K⇤

1 ⇥ K⇤
2 ) \ G3(A⇤

f ), then there is a natural S⇤-morphism

M3,K3 ! M1,K1 ⇥S⇤ M2,K2,

A = (A, �, ◆,↵) 7!(A1, A2) = (A1, �1, ◆1,↵1) ⇥ (A2, �2, ◆2,↵2),
(38)

where Ai = ◆(ei)A (so A = A1⇥ A2), �i = ◆_(ei)��� ◆(ei), ◆i is the restriction of
◆ to the i th factor, and ↵i,s : Li ⌦ A⇤

f
⇠

�! H1(Ai,s,A⇤
f ) is the restriction of ↵s

to Li ⌦A⇤
f ⇢ L3 ⌦A⇤

f = (L1 ⌦A⇤
f )� (L2 ⌦A⇤

f ) composed with the projection
H1(As,A⇤

f ) ! H1(Ai,s,A⇤
f ).
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For suitably compatible choices of polyhedral cone decompositions, the
morphisms (37) and (38) extend to maps of toroidal compactifications [Har89,
Proposition 3.4]. (Although [Har89] only develops the theory in characteristic
zero, the polyhedral cone decompositions used to define the toroidal
compactifications in Lan’s book [Lan13] are independent of characteristic.
Thus, the arguments of [Har89] go through without change.)

3.1.1. Level structures at p. The definitions of level structures at p in
Section 2.5 for the PEL data Pi are compatible, and the morphisms (37) and (38)
extend to S⇤-morphisms with each Mi,Ki replaced by Mi,Ki,r = MKi,r (Pi).

3.1.2. The canonical bundles. To define the groups G0,i and H0,i as in
Section 2.6.1 in a compatible manner, we need to specify the choice of the⇤0,i ⇢
Wi = Vi/V 0,�1

i , where Vi = Li ⌦ C with the Hodge structure defined by the
complex structure on Li ⌦R determined by hi . As V1 = V with the same Hodge
structure we take ⇤0,1 = ⇤0, but since V2 = V1 with the Hodge indices reversed
(so V 0,�1

2 = V�1,0
1 ) we take ⇤0,2 to be the image of ⇤_

0 in W2 = V2/V 0,�1
2 =

V1/V�1,0
1 using the canonical identification V 0,�1

1 = V 0,�1 ⇠= ⇤_
0 ⌦S0 C. Then

⇤1 = ⇤with its canonical pairing, and⇤2 = ⇤_
0 �(⇤_

0 )
_ = ⇤with its canonical

pairing. We then set ⇤0,3 = ⇤0,4 = ⇤0,1 � ⇤0,2 and ⇤3 = ⇤4 = ⇤1 � ⇤2.
The fixed decompositions of ⇤0 and ⇤_

0 asOB ⌦ Zp-modules then determine
compatible isomorphisms

H0,i /Zp

⇠
�! Gm ⇥

Y

w|p

8
>>><

>>>:

GLbw(Ow) i = 1,
GLaw(Ow) i = 2,
GLbw(Ow) ⇥ GLaw(Ow) i = 3,
GLn(Ow) i = 4.

(39)

There are canonical inclusions H0,3 ,! H0,4 and H0,3 ,! H0,1 ⇥ H0,2 which
correspond to the obvious inclusions under the isomorphisms (39). They both
induce the identity map on the Gm-factor; on the GL-factors they induce the
diagonal mapping and identity map, respectively. This gives similar inclusions
among the (lower-triangular) Borels BH0,i and the (diagonal) tori TH0,i . In
particular, a dominant character  of TH0,4 or a pair  = (1, 2) consisting of
dominant characters 1 of TH0,1 and 2 of TH0,2 restricts to a dominant character
of TH0,3 , which we also denote by  .
Let ⇡i : Ei ! MKi be the canonical bundle. The maps (37) and (38) extend to

maps of bundles

E3 ! E4, (A, �, ◆,↵, ") 7! (A, �, ◆ � diag,↵K⇤
4 , "), (40)
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and

E3 !E1 ⇥S⇤ E2,

(A, �, ◆,↵, ") 7! (A1, �1,◆1,↵1, "1) ⇥ (A2, �2, ◆2,↵2, "2),
(41)

where "i = ei � " � ◆(ei). There are similar maps of the bundles Ei,r = Ei ⇥Mtor
i,Ki

Mi,Ki,r with level structure at p.

3.1.3. The Igusa towers. Let Tn,m,i/Sm,i , i = 1, . . . , 4, be the Igusa tower for
Mi,Ki as in 2.8. The maps (37) and (38) extend to maps of Igusa towers in the
obvious ways:

Tn,m,3 ! Tn,m,4, (A,�) 7! (A4,�) (42)

and
Tn,m,3 ! Tn,m,1 ⇥Zp Tn,m,2, (A,�) 7! ((A1,�1), (A2,�2)), (43)

where �i is the restriction of � to L+
i ⌦ µpn composed with the projection to

A_
i [p

n]�.

REMARK 3.1.4. As explained in [HLS06, Section 2.1.11], the inclusion (42)
does not restrict on complex points to the map i3 of Shimura varieties determined
by the inclusion of G3 in G4. For each prime w of F+ dividing p, let

�Vw =

0

BB@

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

1

CCA 2 G4(F+
w );

�Vp = (�Vw)w|p 2 G4(F+
p ). Then the inclusion (42) is given by i3 composed with

right translation by �Vp . (See map (73).)

When working with p-adic modular forms in subsequent sections, we will
consider all the Tn,m,i simultaneously, i = 1, 2, 3, 4. The collection {Tn,m,i}, or
equivalently lim

�!m
lim
 �n

Tn,m,i will be denoted Igi , 1 6 i 6 4. Thus, if Kp
i , i = 1,

2, 3, 4, are prime-to-p level subgroups of Gi(A f ), with Kp
3 ⇢ Kp

4 , K
p
3 ⇢ Kp

1⇥Kp
2 ,

we similarly define Igusa varieties Kp
i
I gi and inclusions

�Vp � i3 : Kp
3
Ig3 ! Kp

4
Ig4; i4 : Kp

3
Ig3 ! Kp

1
Ig1 ⇥ Kp

2
Ig2. (44)

3.2. Restrictions of forms. The maps between the various moduli spaces and
bundles induce maps between spaces of modular forms.
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3.2.1. Restricting modular forms. Let R be a Zp-algebra and  either a
dominant character of TH0,4 or a pair  = (1, 2) consisting of dominant
characters 1 of TH0,1 and 2 of TH0,2 . Then the maps (40) and (41) yield maps
of modular forms

res1 : M(K4; R) ! M(K3; R),

and
res2 : M1(K1; R) ⌦R M2(K2; R) ! M(K3; R).

Let  be either a Q⇥

p -valued character of TH4(Zp/prZp) or a pair  = ( 1,

 2) consisting of a Q⇥

p -valued character  1 of TH1(Zp/prZp) and  2 of
TH2(Zp/prZp). Then  defines a character of TH3(Zp/prZp) that we continue to
denote  . Let R be a Zp[ ]-algebra. The analogues of the maps (40) and (41)
for level structures at p yield maps

res3 : M(K4,r , ; R) ! M(K3,r , ; R), (45)

and

res4 : M1(K1,r , 1; R) ⌦R M2(K2,r , 2; R) ! M(K3,r , ; R).

3.2.2. Restrictions of classical forms. In terms of the complex uniformizations
(25), the restrictions (40) and (41) correspond to the maps induced by the
canonical inclusions of G3 and H0,3 into G4 and H0,4 and into G1 ⇥ G2 and
H0,1 ⇥ H0,2, respectively. In particular, if ' : G4(A)⇥ H0,4(C) ! C corresponds
to a weight  modular form on G4 of level K4, then the image of ' under res1
or res3 corresponds to the restriction of ' to G3(A) ⇥ H0,3(C). Moreover, if '
corresponds to f : G4(A) ! W,4(C) (we include the subscript ‘i’ to indicate
that W,i is the irreducible representation of H0,i of highest weight ), then its
image under res1 or res3 is just the restriction of f to G3(A) composed with the
projection W,4(C) ! W,3(C), � 7! �|H0,3(C). The same holds for the maps res2
and res4.

3.2.3. Restrictions of p-adic forms. The maps (42) and (43) induce the obvious
restriction maps on modules of p-adic modular forms—which we also denote
by resi—compatible with weights  and characters  in the obvious way, as
well as with the inclusion of spaces of modular forms and with restriction to
similitude components. In particular, the isomorphisms described above extend
to isomorphisms of spaces of p-adic modular forms (with the tensor product ⌦R

replaced by the completed tensor product ⌦̂R ).
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3.2.4. Base point restrictions. Let V = Vi for i 2 {1, 2, 3, 4}, G = GPi the
corresponding unitary similitude group, so that (G, X) is the Shimura datum
associated to the moduli problem Pi . Let J 0

0 be a torus as in Section 2.3.2, and
let (J 0

0, h0) ! (G, X) be the morphism of Shimura data defined there. Say (J 0
0,

h0) is ordinary if the points in the image of the map S(J 0
0, h0) ! S(G, X) of

Shimura varieties reduce to points corresponding to ordinary abelian varieties. If
(J 0

0, h0) is ordinary, then it has an associated Igusa tower, denoted Tn,m(J 0
0, h0)

for all n,m. We have T0,m(J 0
0, h0) = Sm(J 0

0, h0), in the obvious notation, which
is the reduction modulo pm of an integral model of S(J 0

0, h0); each Tn,m(J 0
0, h0)

is finite over the corresponding Sm .
Moreover, letting Tn,m(G, X) = Tn,m(Pi) in the obvious notation, there is a

morphism of Igusa towers

Tn,m(J 0
0, h0) ! Tn,m(G, X). (46)

Thus, for any r there are restriction maps resJ 0
0,h0 : M(Ki,r , R) ! M((J 0

0,
h0), R), in the obvious notation; the image is contained in forms of level r
on S(J 0

0, h0), in an appropriate sense, but we do not specify the level. The
restriction maps behave compatibly with respect to classical, complex, and p-
adic modular forms; the restriction map for p-adic modular forms is denoted
resp,J 0

0,h0 . In order to formulate a precise statement, we write Vp((G, X); Kp, R)
for p-adic modular forms of weight p and level Kp on the Igusa tower for S(G,
X) (respectively V ord

p
((G, X); Kp, R) for the image of the ordinary projector)

and Vp((J 0
0, h0), R) for the corresponding object for S(J 0

0, h0) (the level away
from p is not specified).

PROPOSITION 3.2.5. Let (J 0
0, h0) ! (G, X) be a morphism of Shimura data,

with J 0
0 a torus, and suppose (J 0

0, h0) is ordinary. Let G = GPi for i = 1, 2, 3, 4,
and let  be a dominant weight; let p be the corresponding p-adic weight, as
in 2.9.1. Let R be a p-adic ring.
(i) The following diagram is commutative:

M(Ki,r , R)
R,G,X

����! Vp(K
p
i , R)

resJ 0
0,h0

??y resp,J 0
0,h0

??y

M((J 0
0, h0), R)

R,J 0
0,h0����! Vp((J 0

0, h0), R)

Here the horizontal maps are the ones defined in (28).
(ii) Let f 2 V ord

p
((G, X); Kp, R). Suppose for every ordinary CM pair (J 0

0, h0)
mapping to (G, X), the restriction resJ 0

0,h0( f ) = 0. Then f = 0.
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Proof. Point (i) is an immediate consequence of the definitions. Note that
V ord

p
((G, X); Kp, R) is the R-dual to a finite rank module over an appropriate

Iwasawa algebra, by Hida theory; thus, f belongs to a finite rank R module.
Point (ii) follows from the Zariski density of the ordinary locus in the integral
model of S(G, X) [Wed99], provided we know there are enough CM points
in the ordinary locus. But every point on the ordinary locus over a finite field
lifts (with its polarization, endomorphisms, and prime-to-p level structure) to
the generic fiber (see for example [Moo04, Proposition 2.3.12]).

4. Eisenstein series and zeta integrals

4.1. Eisenstein series and the doubling method. We begin this section by
introducing certain Eisenstein series and (global) zeta functions. Then we choose
specific local data and compute local zeta integrals (whose product gives the
global zeta function).
We assume throughout this section that we are in the setting of Section 3. In

particular, there is a hermitian pair (V, h·, ·iV ) over K such that V = L1 ⌦ Q
and h·, ·i1 = traceK/Q�h·, ·iV . Then G1/Q is the unitary similitude group of the
pair (V, h·, ·iV ). Let (W, h·, ·iW ) be the hermitian pair with W = V � V and
h·, ·iW = h·, ·iV ��h·, ·iV . Then G4/Q is the unitary similitude group of the pair
(W, h·, ·iW ). Most of the constructions to follow take place on the group G4/Q,
which we denote throughout by G for ease of notation. We write Zi to denote
the center of Gi .
An important observation is that G2(A) = G1(A), so a function or

representation of one of these groups can be viewed as a function or
representation of the other; we use this repeatedly.
In part to aid with the comparison with calculations in the literature, we

introduce the unitary groups Ui = ker(⌫ : Gi ! Gm).
Let n = dimK V . Let S0 be the set of primes dividing either the discriminant

of the pairing h·, ·i1 or the discriminant of K.

Plan of this section. We begin by recalling the general setup for Siegel
Eisenstein series on G and the zeta integrals in the context of the doubling
method, explaining how the global integral factors as a product over primes of
K. The local factors fall into three classes, which are treated in turn. The factors
at nonarchimedean places prime to p are the easiest to address: in Section 4.2
we recall the unramified factors, which have been known for more than 20 years,
and explain how to choose data at ramified places to trivialize the local integrals.
Factors at primes dividing p are computed in Section 4.3. This is the most

elaborate computation in the paper. The local data defining the Eisenstein series
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have to be chosen carefully to be compatible with the p-adic Eisenstein measure
which is recalled in Section 5.3. The local data for the test forms on G3 are
chosen to be anti-ordinary vectors, a notion that will be defined explicitly
in 8.3.5, and that provide the local expression of the fact, built into Hida
theory, that the test forms are naturally dual to ordinary forms. The result of the
computation is given in Theorem 4.3.10: we obtain p-stabilized Euler factors, as
predicted by conjectures of Coates and Perrin-Riou.
Sections 4.4 and 4.5 are devoted to the local integrals at archimedean places.

Much of the material here is a review of the theory of holomorphic differential
operators developed elsewhere, and of classical invariant theory. We prove in
particular (Proposition 4.5.5) that the archimedean zeta integrals do not vanish;
as explained in the introduction, in most cases we do not know explicit formulas
for these integrals.

4.1.1. The Siegel parabolic. Let V d = {(x, x) 2 W : x 2 V } and Vd = {(x,
�x) 2 W : x 2 V }, so W = Vd � V d is a polarization of h·, ·iW . Projection
to the first summand fixes identifications of V d and Vd with V . Recall that G
acts on the right on W . Let P ⇢ G be the stabilizer of V d ; this is a maximal Q-
parabolic, the Siegel parabolic. Let M ⇢ P be the stabilizer of the polarization
W = Vd � V d and N ⇢ P the group fixing both V d and W/V d , so M is a
Levi subgroup and N the unipotent radical. Denote by � the canonical map � :
P ! GLK(V d) = GLK(V ). Then M ⇠

�! GLK(V )⇥Gm ,m 7! (�(m), ⌫(m));
the inverse map is (A, �) 7! m(A, �) = diag(�(A⇤)�1, A), where A⇤ = tAc is
the transpose of the conjugate under the action of c. Also, fixing a basis for V
gives an identification �0 : N ⇠

�! Hern(K), where Hern denotes the space of
n ⇥ n hermitian matrices; with respect to this basis and the polarization above,
we obtain an identification N ⇠

�!
�1n �0(N )
0 1n

�
✓ GL2n(K).

Define �P(·) = |det � �(·)|n .

4.1.2. Induced representations. Let � = ⌦�w be a character of K⇥\A⇥
K
. For

s 2 C let

I (� , s) = IndG(A)
P(A)(�(det ��(·)) · ��s/n

P (·) · |⌫(·)|sn/2),

with the induction smooth and unitarily normalized. This factors as a restricted
tensor product

I (� , s) = ⌦v Iv(�v, s),

with v running over the places ofQ, Iv(�v, s) the analogous local induction from
P(Qv) to G(Qv), and �v = ⌦w|v�w.

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


p-adic L-functions for unitary groups 45

4.1.3. Eisenstein series. For f = f� ,s 2 I (� , s) we form the standard
(nonnormalized) Eisenstein series,

E( f, g) =
X

�2P(Q)\G(Q)

f (� g).

If Re(s) is sufficiently large, this converges absolutely and uniformly on compact
subsets and defines an automorphic form on G(A). Given a unitary character �
and a Siegel–Weil section f 2 I (� , s) (Siegel–Weil sections are the functions
used to define the Siegel–Weil Eisenstein series, as in [Har08]), we put

fs := f� ,s := f
Ef (s, g) := Efs (g).

When fs 2 I (� , s) is K -finite for a maximal compact subgroup K ⇢ G, the
Eisenstein series Ef (s, g) have a meromorphic continuation in s.

4.1.4. Zeta integrals. In this section, we briefly summarize key details of
the doubling method, which we use to obtain zeta integrals. The doubling
method holds for general classes of cuspidal automorphic representations of
G1(A). However, in order to carry out our full p-adic interpolation, our
approach requires us (later in the paper) to place additional conditions on the
representations ⇡ that we consider. In particular, we will need ⇡ to be contained
in certain induced representations for places dividing p and in certain discrete
series representations for places dividing 1.
Denote byOK+ the ring of integers ofK+. For i = 1, 2, 3, 4,wewriteUi(A)=Q0
v Ui,v, with the (restricted) products over all the places of K+ and Ui,v the

points of groups defined over OK
+
v
. Similarly, we write G(A) = G1 ⇥

Q0
q Gq

and P(A)= P1⇥
Q0

q Pq , where the (restricted) products are over rational primes
q. We can nevertheless write

Gp = Q⇥
p ⇥

Y

w2⌃p

Gw; Pp = Q⇥
p ⇥

Y

w2⌃p

Pw.

Let ⇡ be an irreducible cuspidal automorphic representation of G1(A), and
let ⇡_ be its contragredient; it is a twist of the complex conjugate of ⇡ and is
therefore also a cuspidal automorphic representation. Let S⇡ be the set of finite
primes v inOK+ for which ⇡v is ramified. Before introducing the zeta integral for
⇡ , we would like to explain what it means for a function in ⇡ to be factorizable
over places inK+. However, G1 is aQ-group that is not the restriction of scalars
of a group over K+. We therefore choose an irreducible U1(A)-constituent
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⇡ ⇢ ⇡ that occurs in the space of automorphic forms on U1, and denote the
dual ⇡[; note that ⇡[ occurs inside the restriction of ⇡_ to U1(A). We assume
⇡ contains the spherical vectors for K S⇡ . It is well known (and follows from
the unfolding computation recalled below) that the standard L-function does not
depend on this choice. We fix nonzero unramified vectors 'w,0 and '0

w,0 in ⇡w

and ⇡_
w , respectively, for all finite places w outside S⇡ , and choose factorizations

as in (4) compatible with the unramified choices:

⇡
⇠

�! ⇡1 ⌦ ⇡ f ; ⇡ f
⇠

�! ⇡ S⇡ ,p ⌦ ⇡ p ⌦ ⇡ S⇡
;

⇡ p
⇠

�!
O

w|p

⇡w; ⇡ S⇡

⇠
�!

O

w2S⇡

⇡w;
(47)

and analogous factorizations for ⇡[. We also think of ⇡[ as an anti-holomorphic
automorphic representation of G2. Let ' 2 ⇡ K S⇡ , '[ 2 ⇡[,K S⇡ ; we think of ' and
'[ as forms on G1 and G2, respectively. We suppose they decompose as tensor
products with respect to the above factorizations:

' =
O

v

'v; '[ =
O

v

'[
v (48)

with 'v and '[
v equal to the chosen 'v,0 and '0

v,0 when v /2 S⇡ . We write equalities
but the formulas we write below depend on the factorizations in (47) and their
counterpart for ⇡[.
In Sections 4.3 (respectively 4.4–4.5), we will choose specific local

components at primes dividing p (respectively at archimedean places). These
will turn out to be anti-ordinary (respectively anti-holomorphic) vectors:

'p :=
O

w|p

'w =
O

w|p

�a-ord
w,r,⇡w

; '[
p :=

O

w|p

'[
w =

O

w|p

�a-ord
w,r,⇡[

w
(49)

and
'1 :=

O

� |1

'� = '� ,�; '[
1 :=

O

� |1

'[
� = '

[
� ,�

. (50)

REMARK 4.1.5. The meaning of the notation in (49) and (50) will be explained
in Sections 8.3.5 and 8.4.4 and Section 4.4.14, respectively. Here we just note
that:

(i) 'p (respectively '[
p) is anti-ordinary with respect to a group Ir (respectively

I [
r ), in the sense to be described in Section 8.3.5 (respectively 8.4.4); and

(ii) r is an integer chosen in (60) to be sufficiently large.
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Having made the choice of irreducible constituent ⇡ , we will henceforth forget
about the choice. In order not to make the notation too difficult to read, we will
use ⇡ and ⇡[ to denote irreducible U1(A) representations, but we will mean
irreducible constituents of the restrictions of representations of G1.
We also fix local U1(K

+
v )-invariant pairings h·, ·i⇡v

: ⇡v ⇥ ⇡_
v ! C for all v

such that h'v,0,'
[
v,0i⇡v

= 1 for all v /2 S⇡ .
Let f = fs(•) 2 I (� , s). Let ' 2 ⇡ and '[ 2 ⇡[ be factorizable vectors as

above. The zeta integral for f ,', and '[ is

I (','[, f, s)

=
Z

Z3(A)G3(Q)\G3(A)
Ef (s, (g1, g2))��1(det g2)'(g1)'[(g2) d(g1, g2).

By the cuspidality of ' and '[ this converges absolutely for those values of s at
which Ef (s, g) is defined and defines a meromorphic function in s (holomorphic
wherever Ef (s, g) is). Moreover, it follows from the unfolding in [GPSR87] that,
for any pair ⇡,⇡ 0 of automorphic representations of G1, the map

(','0) 7! I (','0, f, s)

defines a G1(A)-invariant pairing between ⇡ and ⇡ 0. The multiplicity one
Hypothesis 7.3.3 implies that the space of such pairings is at most one-
dimensional, and is exactly one-dimensional provided ⇡ 0 = ⇡_ (upon restriction
to U (V )). Thus:
If h','[i = 0 then I (','[, f, s) = 0 for all s.
Here h•, •i denotes the standard L2 pairing for the Tamagawa measure dg. So

we suppose h','[i 6= 0. Then h'v ⌦ '[
vi⇡v

6= 0 for all v. For Re(s) sufficiently
large, ‘unfolding’ the Eisenstein series then yields

I (','[, f, s) =
Z

U1(A)
fs(u, 1)h⇡(u)','[i⇡ du.

Denote by fU the restriction of f to U4(A). Henceforward we assume fU (g) =N
v fv(gv) with

fv = fv,s 2 Iv(�v, s), �v =
O

w|v

�w.

Then the last expression for I (','[, s) factors as

I (','[, f, s) =
Y

v

Iv('v,'
[
v, fv, s) · h','

[i, where

Iv('v,'
[
v, fv, s) =

R
U1,v

fv,s(u, 1)h⇡v(u)'v,'
[
vi⇡v

du

h'v,'
[
vi⇡v

.

(51)
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By hypothesis, the denominator of the above fraction equals 1 whenever v /2 S⇡ .
We denote the integral in the numerator by Zv('v,'

[
v, fv, s).

REMARK 4.1.6. In order to define the proper arithmetically normalized period,
we want to consider the vectors ' 2 ⇡ and

'[
� := '[ ⌦ ��1 � det 2 ⇡[ ⌦ ��1 � det

as the input to the integral. Thus, for '1 2 ⇡ , '2 2 ⇡ ⌦ ��1 � det we define
h'1,'2i� to be the L2 pairing of '1 with '2 ⌦ � � det. Then

h','[
� i� = h','[i.

It seems as if nothing has changed, but in the final result we will be taking vectors
of the form ' ⌦'[

� that are integral with respect to a structure native to the space
⇡ ⇥ ⇡ ⌦ ��1 � det, and the resulting periods will differ by CM periods.

As in Section 2.3, let ⌃ = {� 2 ⌃K : p� 2 ⌃p}. This is a CM type for K.
Throughout the remainder of this section, we take � : K⇥\A⇥

K
! C⇥ to be a

unitary character such that �1 =
N

�2⌃ �� is given by

�1((z� )) =
Y

�2⌃

z�(k�+2⌫� )
� (z� z� )

k�
2 +⌫� , (z� ) 2

Y

�2⌃

C⇥, (52)

where k = (k� ) 2 Z⌃
>0, and (⌫� ) 2 Z⌃ .

For the remainder of this section, we choose specific local Siegel–Weil
sections fv 2 Iv(�v, s) and compute the corresponding local zeta integrals
(whose product is the Euler product of the global zeta function discussed at the
beginning of this section).

4.2. Local zeta integral calculations at nonarchimedean places v - p. Let
Sram = S⇡ [ S� [ SK, where S� denotes the set of finite primes v in OK+ for
which �v =

N
w|v �w is ramified and SK denotes the set of finite primes in OK+

that ramify in K. Let S be a finite set of finite primes in Q such that p /2 S and
such that for all rational primes `, if a prime inK+ above ` is in Sram, then ` 2 S.
Let S0 be the set of primes of K+ lying above the primes of S. In particular, S0

contains Sram.

4.2.1. Unramified case. For the moment, assume that ` 6= p is a finite place of
Q such that ` 62 S. Then K` := G4(Z`) is a hyperspecial maximal compact of
G(Q`) = G4(Q`) =

Q
v|` G4,v, and we choose f` =

N
v|` fv 2 I`(�`, s) to be the

unique K`-invariant function such that f`(K`) = 1. These sections are used to
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construct the Eisenstein measure in [Eis15]. For each prime v /2 S0, let 'v 2 ⇡v

and '0
v 2 ⇡_

v be the normalized spherical vectors such that h'v,'
0
vi⇡v

= 1. The
primes v /2 S0 fall into two categories: split and inert. For split places v /2 S0,
U1,v

⇠= GLn(K
+
v ); the zeta integral computations in this case reduce to those

in [Jac79] and [GPSR87, Section 6]. For inert places v /2 S0, the computations
were completed in [Li92, Section 3]. In either case, we have

dn,v(s,�v)Iv('v,'
0
v, fv, s) = Lv(s + 1

2 ,⇡v,�v),

where

dn,v(s,�v) = dn,v(s) =
n�1Y

r=0

Lv(2s + n � r,�v |K+ ⌘r
v), (53)

⌘v is the character on K+
v attached by local class field theory to the extension

Kw/K
+
v (where w is a prime of K lying over v), and Lv(s,⇡v,�v) denotes the

value at s of the standard local Langlands Euler factor attached to the unramified
representation ⇡v of U1,v, the unramified character �v of Kv, and the standard
representation of the L-group of U1,v. As noted on [HLS06, page 439], for each
v /2 S0,

Lv(s,⇡v,�v) = Lv(s,BC(⇡v) ⌦ �v � det),

where BC denotes the local base change fromU1,v to GLn(Kv) and the right-hand
side is the standard Godement–Jacquet Euler factor.

Remarks on [HLS06]. From the formula for dn,v(s) given in [Li92, Section 3],
it appears that there is a typographical error in the exponent in the formula for
dn,v given in [HLS06, Equation (3.1.2.5)]. More precisely, according to the final
formula in [Li92, Theorem 3.1], the n � 1 should not appear in the exponent
in [HLS06, Equation (3.1.2.5)].
Moreover, there is a typographical error on [HLS06, page 439].

Although [HLS06, page 439] gives a base change to GLm , the base change
should actually be to GLn .

4.2.2. Ramified case. Now, assume that ` 2 S, and let v 2 S0 be a prime lying
over `. By [HLS06, page 439], Pv · (U1,v ⇥ 1n) ✓ Pv ·U3,v is open in U4,v. Since
the big cell PvwPv is also open in U4,v, we see that (Pv · (U1,v ⇥ 1n)) \ PvwPv

is open in U4,v. As noted in [HLS06, Equation (3.2.1.5)], Pvw = Pv · (�1n,
1n) ✓ Pv ·U3,v and Pv \ (U1,v ⇥ 1n) = (1n, 1n) 2 U3,v. Therefore, (Pv · (U (V )⇥
1n)) \ PvwPv is an open neighborhood of w in PvwPv and hence is of the form
PvwU for some open subset U of the unipotent radical Nv of Pv. Let 'v 2 ⇡v and
'0
v 2 ⇡ 0

v be such that h'v,'
0
vi⇡v

= 1. Let Kv be an open compact subgroup of
G1,v that fixes 'v.
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For each place v 2 S0, let Lv be a small enough lattice so that Uv contains the
open subgroup N (Lv) of Nv defined by

N (Lv) =

⇢✓
1n x
0 1n

◆ ���� x 2 Lv

�

(where we identify N with �0(N ) as in Section 4.1.1) and so that

PvwN (Lv) ✓ Pv · (�1n · Kv ⇥ 1n) ✓ Pv ·U3,v.

Then

PvwN (Lv) = Pv · (Uv ⇥ 1n)

for some open neighborhood Uv of �1n contained in the open subset �1n · Kv

of U1,v. Let �Lv
denote the characteristic function of N (Lv). As explained

on [HLS06, pages 449–50], for each finite place v of K+, there is a Siegel–Weil
section fLv

supported on PvwPv such that

fLv
(wx) = �Lv

(x)

for all x 2 Nv.
For each of the primes v 2 S0, we define a local Siegel–Weil section fv 2 I (�v,

s) by
fv = f �

Lv
,

where
f �
Lv
(g) = fLv

(g · (�1, 1))

for all g 2 U4,v. (Note that f �
Lv

is just a translation by (�1, 1) 2 U3,v = U1,v ⇥
U2,v = U1,v ⇥U1,v of local Siegel–Weil sections discussed in [HLS06, Sections
(3.3.1)–(3.3.2)] and that, where nonzero, the Fourier coefficients associated to
f �
Lv

are the same as the Fourier coefficients associated to similar Siegel–Weil
sections discussed in [Eis15, Section 2.2.9] and [Shi97]. Therefore, this minor
modification of the choice of Siegel–Weil sections in [HLS06, Eis15, Shi97]
will not affect the p-adic interpolation of the q-expansion coefficients of the
Eisenstein series that is necessary to construct an Eisenstein measure.)

LEMMA 4.2.3. Let v 2 S0, and let fv = f �
Lv
. Then

Iv('v,'
0
v, fv,�) = volume(Uv).

Proof. The support of f �
Lv

in U1,v ⇥ 1n is �1n · Uv ⇥ 1n , and for g 2 U1,v ⇥ 1n ,

f �
Lv
(g) = ��1n ·Uv⇥1n (g)
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where ��1n ·Uv⇥1n denotes the characteristic function of �1n · Uv ⇥ 1n . Since
⇡v(g)'v = 'v for all g 2 Kv ◆ �1n · Uv, we therefore see that

Iv('v,'
0
v, fv,�) =

R
�1n ·Uv

h'v,'
0
vi⇡v

dg
h'v,'0

vi⇡v

= volume(Uv).

4.3. Local zeta integral calculations at places dividing p.

Plan of this section. We begin by choosing local Siegel–Weil sections at the
primes w dividing p that are compatible with the Eisenstein measure, and then
turn to choosing test vectors (anti-ordinary vectors) in the local representations
⇡w and ⇡[

w. The last six pages or so contain explicit matrix calculations that
reduce the zeta integral to a product of integrals of Godement–Jacquet type,
which can then be computed explicitly.
The reader may observe that the representations ⇡w and ⇡[

w, like the
automorphic representations of which they are local components, are logically
prior to the local Siegel–Weil sections, inasmuch as our goal is to define p-adic
L-functions of (ordinary) families and the Eisenstein measure is a means to
this end. One of the subtleties of this construction is that a global automorphic
representation ⇡ automatically picks out the function whose integral is the
desired value of the Eisenstein measure. This is unfortunately concealed in the
technical details of the construction, but the reader should be able to spot the
principle at work in Section 7.5.
The calculations presented here are more general than those needed for our

construction of the p-adic L-functions of ordinary families. The p-adic place
w is assigned to an archimedean place � and thus to a signature (aw, bw) of the
unitary group at � ; but we also introduce partitions of aw and bw. These partitions
can be used to study the variation of p-adic L-functions in P-ordinary families,
where P is a parabolic subgroup of G1(Qp). However, this application has been
postponed in order not to make the paper any longer than it already is, and we
restrict our attention to the usual ordinary families, corresponding to P = B a
Borel subgroup.

4.3.1. Definition of the Siegel–Weil sections. With a few minor changes, the
description of the Siegel–Weil section at p given below is the same as in [Eis15,
Eis14]. For w|p a place of K and U a K-space we let Uw = U ⌦K Kw.
To describe the section f p we make use of the isomorphisms (9). The

isomorphism for G4 identifies G(Qp) with Q⇥
p ⇥

Q
w2⌃p

GLKw
(Ww) and P(Qp)

with Q⇥
p ⇥

Q
w2⌃p

Pn(Kw) with Pn ⇢ GLK(W ) the parabolic stabilizing V d .
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So M(Qp) is identified with Q⇥
p ⇥

Q
w2⌃p

GLKw
(Vd,w) ⇥ GLKw

(V d
w) (the

factors embedded diagonally in GLKw
(Ww)), and N (Qp) is identified withQ

w2⌃p
Nn(Kw) with Nn ⇢ Pn the unipotent radical.

For w 2 ⌃p let �w,1 = �w and �w,2 = ��1
w̄ , where we identify Kw = K

+
w+ =

Kw̄ and where w+ = w|K+ = w̄|K+ . The pair (�w,1,�w,2) determines a character

 w : Pn(Kw) ! C⇥,  w

✓✓
A B
0 D

◆◆
= �w,1(det D)�w,2(det A).

Here we have written an element of Pn with respect to the direct sum
decomposition W = Vd � V d . We put

 w,s =

✓✓
A B
0 D

◆◆
= �w,1(det D)�w,2(det A)|A�1D|�s

w .

Given
N

w2⌃p
fw,s 2

N
w2⌃p

IndGLKw (Ww)

Pn(Kw)
( w,s), we set

f p,s(g) = |⌫|sn/2p

O

w2⌃p

fw,s(gw), g = (⌫, (gw)) 2 G(Qp). (54)

Then, as explained in [Eis15], f p 2 Ip(�p, s).
The choice of a level structure at p for the PEL datum P1 amounts to choosing

an Ow-basis of L1,w, and hence a Kw-basis of Vw, for each w 2 ⌃p. This
then determines a Kw-basis of V d

w and Vd,w, via their identifications with Vw,
and hence a Kw-basis of Ww = Vd,w � V d

w . (This is not in general the basis
corresponding to the level structure for P4 determined by that for P1.) This basis
identifies IsomKw

(V d
w , Vw) with IsomKw

(Vd,w, Vw), and an ordered choice of
this basis identifies GLKw

(Vw) with GLn(Kw). This ordered basis also identifies
GLKw

(Ww)with GL2n(Kw), Pn(Kw)with the subgroup of upper-triangular n⇥n-
block matrices and Mn(Kw) with the subgroup of diagonal n⇥ n-block matrices.
Let w 2 ⌃p. To each Schwartz function �w : HomKw

(Vw,Ww) ! C (so �w

has compact support), we attach a Siegel–Weil section f �w 2 IndGL2n(Kw)
Pn(Kw)

 w,s as
follows. Consider the decomposition

HomKw
(Vw,Ww) = HomKw

(Vw, Vd,w) � HomKw
(Vw, V d

w), X = (X1, X2).

Let

X = {X 2 HomKw
(Vw,Ww) | X (Vw) = V d

w } = {(0, X) | X : Vw
⇠

�! V d
w }.

For X 2 X, the composition Vw
X
�! V d

w

⇠
�! Vw, where the last arrow comes

from the fixed identification of V d with V , is an isomorphism of Vw with itself.
This identifies X with GLKw

(Vw).
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We define the section f �w 2 IndGL2n(Kw)
Pn(Kw)

 w,s by

f �w(g) := �2,w(det g)|det g|
n
2+s
w

Z

X
�w(Xg)��1

1,w�2,w(det X)|det X |n+2s
w d⇥X.

(55)

(The minor difference between the definitions of the Siegel–Weil section at p in
Equation (55) in this paper and in [Eis15, Equation (21)] is due to the fact that we
use normalized induction in the present paper, while we did not use normalized
induction in [Eis15].) Linear operations are viewed here as acting on the vector
space Ww on the right. We recall that X is identified with GLn(Kw); d⇥X is the
measure identified with the right Haar measure on the latter. To define the Siegel–
Weil sections fw,s , we make specific choices of the Schwartz functions �w.
Let (aw, bw) be the signature associated to w|p and L1, h·, ·i1. For each w 2

⌃p, fix partitions

aw = n1,w + · · · + nt (w),w and bw = nt (w)+1,w + · · · + nr(w),w.

Let µ1,w, . . . , µr(w),w be characters of O⇥
w , and let µw = (µ1,w, . . . , µr(w),w) and

µ =
Q

w2⌃p
µw. We view each character µi,w as a character of GLni,w (Ow) via

composition with the determinant. Let

⌫i,w = ��1
1,w�2,wµi,w, i = 1, . . . , r(w),

and let ⌫w = (⌫1,w, . . . , ⌫r(w),w).
Let Xw ⇢ Mn(Ow) comprise the matrices

�
A B
C D), with A 2 Maw(Ow) and D 2

Mbw(Ow), such that the determinant of the leading principal n1,w + · · · + ni,wth
minor of A is in O⇥

w for i = 1, . . . , t (w) and the determinant of the leading
principal nt (w)+1,w+· · ·+ni,wth minor of D is inO⇥

w for i = t (w)+1, . . . , r(w).
Let Ai be the determinant of the leading principal i th minor of A and Di the
determinant of the leading principal i th minor of D. Define �⌫w : Mn(Kw) ! C
to be the function supported on Xw and defined for X =

�
A B
C D

�
2 Xw by

�⌫v (X) = ⌫t (w),w(A) ·
t (w)�1Y

i=1

(⌫i,w · ⌫�1
i+1,w)(An1,w+···+ni,w )

⌫r(w),w(D) · ⇥
r(w)�1Y

i=t (w)+1

(⌫i,w · ⌫�1
i+1,w)(Dnt (w)+1,w+···+ni,w ).

Let

t > max
w2⌃p,16i6r(w)

(1, ordw(cond(µi,w)), ordw(cond(�w))), (56)

and let �w = �w(t) ⇢ GLn(Ow) be the subgroup of GLn(Ow) consisting of
matrices whose terms below the ni,w ⇥ ni,w-blocks along the diagonal are in ptw
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and such that the upper right aw ⇥bw block is also in ptw. For each matrix m 2 �w

with ni,w ⇥ ni,w-blocks mi running down the diagonal, we define

µw(m) =
Y

i

µi,w(det(mi)).

Let �1,w be the function on Mn⇥n(Kw) supported on �w(t) and such that
�1,w(x) = µw(x) for all x 2 �w(t). Let �2,w be the function on Mn⇥n(Kw)
defined by

�2,w(x) = �̂⌫w(x) =
Z

Mn⇥n(Kw)

�⌫w(y)ew(�trace ytx) dy. (57)

Note that �̂⌫w is the Fourier transform of �⌫w , as discussed in [Eis15, Lemma 10].
For X = (X1, X2) 2 HomKw

(Vw,Ww) = HomKw
(Vw, Vd,w) � HomKw

(Vw,
V d
w), let

�w(X) = �� ,µ,w(X1, X2) = vol(�w)
�1�1,w(�X1) · �2,w(2X2).

Recall that we have identified X1 and X2 with matrices through a choice of basis
for Vw (coming from the level structure at p for P1). Note that �� ,µ,w is a partial
Fourier transform in the second variable in the sense of [Eis15, Lemma 10]. We
then define

fw,s := f � ,µ
w := f �w = f �� ,µ,w . (58)

We then define f p,s 2 Ip(�p, s) by (54).
The following lemma describes the support of �2,w.

LEMMA 4.3.2.

(i) For �1, �2 2 �w,

�⌫w(
t�1X�2) = µw(�1�2)�

�1
1,w�2,w(det �1�2)�⌫w(X).

(ii) For X =
�
A B
C D

�
with A 2 Maw⇥aw(Kw), B 2 Maw⇥bw(Kw), C 2 Mbw⇥aw(Kw),

and D 2 Mbw⇥bw(Kw),

�2,w(X) = �(1)
w (A)�(2)

w (B)�(3)
w (C)�(4)

w (D),

with

�(2)
w = charMaw⇥bw (Ow), �(3)

w = charMbw⇥aw (Ow)

supp(�(1)
w ) ✓ p�t

w Maw⇥aw(Ow), supp(�(4)
w ) ✓ p�t

w Mbw⇥bw(Ow).

Here t is as in Inequality (56).
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Proof. Part (i) follows immediately from the definition of �⌫w . It remains to
prove part (ii). Let

X(1) =

⇢
↵ 2 Maw⇥aw(Ow) :

✓
↵ 0
0 1

◆
2 X

�
,

and

X(4) =

⇢
� 2 Mbw⇥bw(Ow) :

✓
1 0
0 �

◆
2 X

�
.

We have

�2,w(X) =
Z

Mn(Kw)

�⌫w(Y )ew
✓

�trace Y
✓

tA tC
tB tD

◆◆
dY

=
Z

X

�⌫w

✓✓
↵ �
� �

◆◆
ew(�trace(↵tA + � tB + � tC + �tD)) d↵ d� d� d�

= �(1)
w (A)�(2)

w (B)�(3)
w (C)�(4)

w (D),

where

�(2)
w (B) =

Z

Maw⇥bw (Ow)

ew(�trace� tB) d� = charMaw⇥bw (Ow)(B),

�(3)
w (C) =

Z

Mbw⇥aw (Ow)

ew(�trace � tC) d� = charMbw⇥aw (Ow)(C),

�(1)
w (A) =

Z

X(1)
�⌫w

✓✓
↵ 0
0 1

◆◆
ew(�trace↵tA) d↵

= Vol(Maw⇥aw(p
t
w))

X

x=
�
↵ 0
0 1

�
2X mod ptw

⇥ �⌫w(x)ew(�trace↵tA)charp�t
w Maw⇥aw (Ow)(A),

and

�(4)
w (D) =

Z

X(4)
�⌫w

✓✓
1 0
0 �

◆◆
ew(�trace �tA) d↵

= Vol(Mbw⇥bw(p
t
w))

X

x=
�
1 0
0 �

�
2X mod ptw

⇥ �⌫w(x)ew(�trace �tD)charp�t
w Mbw⇥bw (Ow)(D).
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4.3.3. Local induced representations. Having chosen a Siegel–Weil section for
each prime w 2 ⌃p, we move on to the zeta integral calculations for such a w.
First, we introduce some additional notation. Let Baw ✓ GLaw be the standard

parabolic subgroup associated to the partition aw = n1,w + · · · + nt (w),w. Let
Bbw ✓ GLbw be the standard parabolic subgroup associated to the partition bw =
nt (w)+1,w + · · · + nr(w),w. Let Raw,bw ✓ GLn be the standard parabolic subgroup
associated to n = aw + bw. Let Law,bw = GLaw ⇥GLbw denote the Levi subgroup
of Raw,bw . Let Rw ⇢ Raw,bw be the parabolic such that Rw \ Law,bw = Baw ⇥ Bop

bw .
Recall the characters µi,w from Section 4.3.1, which define characters on

GLni,w (Ow) via composition with the determinant. We define characters µ0
i,w by

µ0
i,w =

(
��1
2,wµ

�1
i,w if 1 6 i 6 t (w),

��1
1,wµi,w if t (w)+ 1 6 i 6 r(w),

for all w 2 ⌃p. Let

µ0
aw =

t (w)O

i=1

µi,w, µ0
bw =

r(w)O

i=t (w)+1

µ0
i,w,

µ0
w =

r(w)O

i=1

µ0
i,w = µ0

aw

O
µ0

bw ,

µ0 =
O

w2⌃p

µ0
w

denote characters on
Qt (w)

i=1 GLni,w (Ow),
Qr(w)

i=t (w)+1 GLni,w (Ow),
Qr(w)

i=1 GLni,w (Ow)

and
Q

w(
Qr(w)

i=1 GLni,w (Ow)), respectively (again, by composing with
determinants).
For all w 2 ⌃p, let ⌧i,w, 1 6 i 6 r(w), be an unramified irreducible

admissible representation of GLni,w (Kw). Let �i,w, 1 6 i 6 r(w), be a character
of GLni,w (Kw) such that �i,w|GLni,w (Ow) = µ0

i,w. Let ⇡i,w = ⌧i,w ⌦ �i,w. Let

IndGLaw
Baw

✓ t (w)O

i=1

⇡i,w

◆
⇣ ⇡aw and IndGLbw

Bop
bw

✓ r(w)O

i=t (w)+1

⇡i,w

◆
⇣ ⇡bw

be irreducible admissible quotients. Similarly, let

IndGLn
Raw,bw

(⇡aw ⌦ ⇡bw) ⇣ ⇡w

be an irreducible admissible quotient. By composition of these quotients, ⇡w is
realized as a quotient of IndGLn

Rw
(
Nr(w)

i=1 ⇡i,w).
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For all w 2 ⌃p, let ⌧̃i,w be the contragredient of ⌧i,w, and let �̃i,w be the
contragredient of �i,w. Let ⇡̃i,w = ⌧̃i,w ⌦ �̃i,w; this is the contragredient of ⇡i,w.
Let ⇡̃aw , ⇡̃bw , and ⇡̃w be the respective contragredients of ⇡aw , ⇡bw , and ⇡w.
For all w 2 ⌃ and 1 6 i 6 r(w), let h·, ·i⇡i,w

: ⇡i,w ⇥ ⇡̃i,w be the tautological
pairing of a representation and its contragredient. Let (·, ·)aw =

Nt (w)

i=1 h·, ·i⇡i,w

and (·, ·)bw =
Nr(w)

i=t (w)+1 h·, ·i⇡i,w
. Then

h·, ·iaw : IndGLaw
Baw

✓ t (w)O

i=1

⇡i,w

◆
⇥ IndGLaw

Baw

✓ t (w)O

i=1

⇡̃i,w

◆
! C,

h', '̃iaw =
Z

GLaw (Ow)

('(k), '̃(k))aw dk,

and

h·, ·ibw : IndGLbw
Bop
bw

✓ r(w)O

i=t (w)+1

⇡i,w

◆
⇥ IndGLbw

Bop
bw

✓ r(w)O

i=t (w)+1

⇡̃i,w

◆
! C,

h', '̃ibw =
Z

GLbw (Ow)

('(k), '̃(k))bw dk

are, respectively, perfect GLaw(Kw)-invariant and GLbw(Kw)-invariant pairings
that identify the pairs of representations as contragredients (and the pairings
with the tautological ones). With respect to these identifications, the dual
of the surjections onto ⇡aw and ⇡bw are inclusions of irreducible admissible
representations

⇡̃aw ,! IndGLaw
Baw

✓ t (w)O

i=1

⇡̃i,w

◆
and ⇡̃bw ,! IndGLbw

Bop
bw

✓ r(w)O

i=t (w)+1

⇡̃i,w

◆

such that the tautological pairings

h·, ·i⇡aw
: ⇡aw ⇥ ⇡̃aw ! C and h·, ·i⇡bw

: ⇡bw ⇥ ⇡̃bw ! C

are the pairings induced from h·, ·iaw and h·, ·ibw by composition with the
projections to ⇡aw and ⇡bw and the inclusions of ⇡̃aw and ⇡̃bw . Similarly,
(·, ·)w = h·, ·i⇡aw

⌦ h·, ·i⇡bw
determines a pairing h·, ·iw : IndGLn

Raw,bw
(⇡aw ⌦ ⇡bw) ⇥

IndGLn
Raw,bw

(⇡̃aw ⌦ ⇡̃bw) ! C that is identified with the tautological pairing and so
induces an inclusion

⇡̃w ,! IndGLn
Raw,bw

(⇡̃aw ⌦ ⇡̃bw)

(and hence by composition an inclusion ⇡̃w ,! IndGLn
Rw

(
Nr(w)

i=1 ⇡̃i,w)) such that the
tautological pairing h·, ·i⇡w

: ⇡w ⇥ ⇡̃w ! C is the pairing induced from h·, ·iw
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via the projection to ⇡w and the inclusion of ⇡̃w. In particular, for � 2 ⇡w and
�̃ 2 ⇡̃w, let ' 2 IndGLn

Raw,bw
(⇡aw ⌦⇡bw) project to � and let '̃ 2 IndGLn

Raw,bw
(⇡̃aw ⌦ ⇡̃bw)

be the image of �̃. Then

h�, �̃i⇡w
=

Z

GLn(Ow)

h'(k), '̃(k)iw dk. (59)

4.3.4. Local congruence subgroups and (anti-ordinary) test vectors. Let t
satisfy the inequality (56), and let

r > 2t. (60)

Consider the following groups:

�R,w = {� 2 GLn(Ow) | � mod prw 2 Rw(O/prwO)}, �R =
Y

w2⌃p

�R,w,

�aw,w = {� 2 GLaw(Ow) | � mod prw 2 Baw(O/prwO)}, �a =
Y

w2⌃p

�aw,w,

�bw,w = {� 2 GLbw(Ow) | � mod prw 2 Bbw(O/prwO)}, �b =
Y

w2⌃p

�bw,w,

�aw,bw = {� 2 GLn(Ow) | � mod prw 2 Raw,bw(O/prO)}.

By the choice of r , the character µw extends to a character of both �R and its
transpose t�R such that for � in �R or t�R , µ0

w(� ) =
Qrw

i=1 µ
0
i,w(�i i), where � =

(�i j) is the block matrix form corresponding to the partition n = n1,w + · · · +
nr(w),w. Similarly, µ0

aw (respectively µ0
bw ) extend to characters of �aw,w and t�aw,w

(respectively �bw,w and t�bw,w). The same holds for µ̃0
w, µ̃0

aw , and µ̃
0
bw .

For all w 2 ⌃p and 1 6 i 6 r(w), let 0 6= �i,w 2 ⇡i,w such that ⇡i,w(k)�i,w =
µ0

i,w(k)�i,w for all k 2 GLni,w (Ow). Such a �i,w exists (and is unique up to nonzero
scalar) since ⇡i,w = ⌧i,w ⌦ �i,w with ⌧i,w unramified. Let �0

aw =
Nt (w)

i=1 �i,w and
�0
bw =

Nr(w)

i=t (w)+1 �i,w. Let 'aw 2 IndGLaw
Baw

(
Nt (w)

i=1 ⇡i,w) be the unique function such
that:

the support of 'aw is Baw(Kw)�aw,w and 'aw(� ) = µ0
aw(� )�

0
aw 8� 2 �aw,w.

(61)
Similarly, let 'bw 2 IndGLbw

Bop
bw

(
Nr(w)

i=t (w)+1 ⇡i,w) be the unique function such that:

the support of 'bw is Bop
bw(Kw)

t�bw,w and 'bw(� ) = µ0
bw(� )�

0
bw 8� 2 t�bw,w.

(62)
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We assume that

the image �aw (respectively �bw ) of 'aw in ⇡aw

(respectively of 'bw in ⇡bw ) is nonzero. (63)

Let �0
w = �aw ⌦ �bw 2 ⇡aw ⌦ ⇡bw . Let 'w 2 IndGLn

Raw,bw
⇡aw ⌦ ⇡bw be the unique

function such that

the support of 'w is Raw,bw(Kw)�R,w and 'w(� ) = µ0
w(� )�

0
w 8� 2 �R,w.

(64)
We also assume that

the image �w of 'w in ⇡w is nonzero. (65)

Note that
⇡w(� )�w = µ0

w(� )�w 8� 2 �R,w. (66)

Let 0 6= �̃i,w 2 ⇡̃i,w be such that ⇡̃i,w(k)�̃i,w = µ̃0
i,w(k)�̃i,w for all k 2 GLni (Ow).

Let �̃0
aw =

Nt (w)

i=1 �̃i,w and �̃0
bw =

Nr(w)

i=t (w)+1 �̃i,w. We suppose that �̃aw 2 ⇡̃aw ,
�̃bw 2 ⇡̃bw , and �̃w 2 ⇡̃w are such that

the image '̃aw of �̃aw in IndGLaw
Baw

✓ t (w)O

i=1

⇡̃i,w

◆
satisfies '̃aw(1) = �̃0

aw ,

the image '̃bw of �̃bw in IndGLbw
Bop
bw

✓ r(w)O

i=t (w)+1

⇡̃i,w

◆
satisfies '̃bw(1) = �̃0

bw ,

(67)

and

the image '̃w of �̃w in IndGLn
Raw,bw

(⇡̃aw ⌦ ⇡̃bw) satisfies '̃w(1) = �̃aw ⌦ �̃bw . (68)

We also suppose that

⇡̃w(� )�̃w = µ̃0
w(� )�̃w 8� 2 t�R,w. (69)

One consequence of (68) and (69) is that

the support of '̃w contains Raw,bw(Kw)
t�R,w. (70)

All of the above conditions imposed on 'w and '̃w will be used in our
computations of the local zeta integrals later in this section. We note in particular
that (64) and (70) (respectively (60)) correspond to condition (i) (respectively
condition (ii)) of Remark 4.1.5.
By (59),

h�w, �̃wi⇡w
=

Z

GLn(Ow)

h'w(k), '̃w(k)iw dk.
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By the choice of the support of 'w in (64), the integrand is zero outside of
�aw,bw = GLn(Ow) \ Raw,bw(Kw)�R,w. Let k 2 �aw,bw . Then k can be expressed
as a product

k =

✓
1 B
0 1

◆ ✓
A 0
0 D

◆ ✓
1 0
C 1

◆

with B 2 Maw,bw(Ow), A 2 GLaw(Ow), D 2 GLbw(Ow), and C 2 Mbw,aw(p
t
w).

Then
'w(k) = 'w

✓✓
A 0
0 D

◆◆
= ⇡aw(A)�aw ⌦ ⇡bw(D)�bw ,

and
'̃w(k) = '̃w

✓✓
A 0
0 D

◆◆
= ⇡̃aw(A)�̃aw ⌦ ⇡̃bw(D)�̃bw .

In particular,

h'w(k), '̃w(k)iw = h�aw , �̃aw i⇡aw
· h�bw , �̃bw i⇡bw

for all k 2 �aw,bw . It follows that

h�w, �̃wi⇡w
= Vol(�aw,bw) · h�aw , �̃aw i⇡aw

· h�bw , �̃bw i⇡bw
. (71)

Here the volume Vol(�aw,bw) is with respect to the chosen Haar measure on
GLn(Ow).
Similar considerations show that

h�aw , �̃aw i⇡aw
= Vol(�aw,w)

t (w)Y

i=1

h�i,w, �̃i,wi⇡i,w

and

h�bw , �̃bw i⇡bw
= Vol(�bw,w)

r(w)Y

i=t (w)+1

h�i,w, �̃i,wi⇡i,w .

As Vol(�R,w) = Vol(�aw,bw)Vol(�aw,w)Vol(�bw,w), it follows that

h�w, �̃wi⇡w
= Vol(�R,w)

t (w)Y

i=1

h�i,w, �̃i,wi⇡i,w 6= 0. (72)

The nonvanishing of each h�i,w, �̃i,wi⇡i,w is an easy consequence of the choice of
�i,w and �̃i,w.

REMARK 4.3.5. In Sections 8.3 and 8.4 we identify specific vectors in certain
local representations (constituents of global representations of interest) that
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satisfy the conditions imposed in this section (see especially Remarks 4.3.5
and 8.4.8). These sections, denoted �a-ord

w,r and �[,a-ord
w,r are natural choices from

the perspective of Hida theory and (anti-)ordinary automorphic forms. The main
result of the following section therefore shows that the local zeta integral for
these natural choices of test vectors contributes a factor at p of the expected
form for a p-adic L-function.

4.3.6. The main calculation. The ordered Kw-basis for Vw chosen above (that
comes from the choice of a level structure for P1) determines a Kw-basis for
Ww = Vw � Vw. This ordered basis for Ww = Vw � Vw identifies GLKw

(Ww)
with GL2n(Kw) and identifies GLKw

(Vw) ⇥ GLKw
(Vw) ✓ GLKw

(Vw � Vw) with
GLn(Vw) ⇥ GLn(Kw) ✓ GL2n(Kw). Note that this is a different identification
of GLKw

(Ww) with GL2n(Kw) from the identification coming from the
decomposition Ww = Vd,w � V d

w . With respect to this new decomposition,
X no longer consists of elements (0, X) but instead elements (X, X). (The
switch between these two decompositions is often convenient in similar
computations, for example in the computations in the doubling method
introduced in [GPSR87].) Recall the Siegel–Weil section f � ,µ

w defined in
Equation (58). In the computation of the zeta integrals, we replace f � ,µ

w with the
translation f̃w+ , defined by:

g 7! g ·

0

BB@

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

1

CCA . (73)

(This is the translation from Remark 3.1.4.) The matrices in Equation (73) are
given with respect to the identification of GLKw

(Ww) with GL2n(Kw) introduced
at the beginning of this paragraph.
To avoid cumbersome notation, we will denote �� ,µ,w by � for the remainder

of this section. The identification Kw = K
+
w+ identifies the representation ⇡w

with a representation ⇡w+ (and hence ⇡̃w with ⇡̃w+). The sections �w 2 ⇡w and
�̃w 2 ⇡̃w are then identified with sections �w+ 2 ⇡w+ and �̃w+ 2 ⇡̃w+ , respectively.
The local zeta integral Zw+(�w+, �̃w+, f̃w+, s), the numerator of the local factor
Iw+(�w+, �̃w+, f̃w+, s) defined in (51), then equals

Zw :=
Z

GLn(Kw)

�2,w(g)|det g|
s+ n

2
w

Z

GLn(Kw)

�

0

BB@(Xg, X)

0

BB@

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

1

CCA

1

CCA

⇥ ��1
1,w�2,w(det X)|det X |2s+n

w h⇡w(g)�w, �̃wi⇡w
d⇥X d⇥g.
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We put

Z p :=
Y

w2⌃p

Zw =
Y

w2⌃p

Zw+(�w+, �̃w+, fw+,�).

Given g, X 2 GLn(Kw), we denote by Z1 = (Z 0
1, Z

00
1 ) and Z2 = (Z 0

2, Z
00
2 ) the

matrices in Mn⇥n(Kw) = Mn⇥aw(Kw) ⇥ Mn⇥bw(Kw) given by

Z1 = Xg = [Z 0
1, Z

00
1 ]

Z2 = X = [Z 0
2, Z

00
2 ],

with Z 0
1, Z

0
2 2 Mn⇥aw(Kw) and Z 00

1 , Z
00
2 2 Mn⇥bw(Kw). So

�((Xg, X)) = Vol(�w)
�1�1,w(Z 0

1, Z
00
2 )�2,w(Z 0

2, Z
00
1 ),

and

h⇡w(g)�w, �̃wi⇡w
= h⇡w(Xg)�w, ⇡̃w(X)�̃wi⇡w

= h⇡w(Z1)�w, ⇡̃w(Z2)�̃wi⇡w
.

Therefore,

Zw = Vol(�w)
�1

Z

GLn(Kw)

Z

GLn(Kw)

�2,w(det Z1)�
�1
1,w(det Z2)|det(Z1Z2)|

s+ n
2

w

⇥ �1,w(Z 0
1, Z

00
2 )�2,w(Z 0

2, Z
00
1 )h⇡w(Z1)�w, ⇡̃w(Z2)�̃wi⇡w

d⇥Z1 d⇥Z2.

(74)

We take the integrals over the following open subsets of full measure. We take
the integral in Z1 over

⇢✓
1 0
C1 1

◆ ✓
A1 0
0 D1

◆ ✓
1 B1

0 1

◆ ���� C1,
t B1 2 Mbw⇥aw(Kw),

A1 2 GLaw(Kw), D1 2 GLbw(Kw)

�
,

with the measure

|det Abw
1 det D�aw

1 |wdC1d⇥A1d⇥D1dB1,

and we take the integral in Z2 over
⇢✓

1 B2

0 1

◆ ✓
A2 0
0 D2

◆ ✓
1 0
C2 1

◆ ���� C2,
tB2 2 Mbw⇥aw(Kw),

A2 2 GLaw(Kw), D2 2 GLbw(Kw)

�
,
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with the measure

|det A�bw
2 det Daw

2 |wdC2d⇥A2d⇥D2dB2.

So

�1,w(Z 0
1, Z

00
2 ) = �1,w

✓✓
A1 B2D2

C1A1 D2

◆◆
, (75)

�2,w(Z 0
2, Z

00
1 ) = �2,w

✓✓
A2 + B2D2C2 A1B1

D2C2 C1A1B1 + D1

◆◆
. (76)

PROPOSITION 4.3.7. The product �1,w

⇣
A1 B2D2

C1A1 D2

⌘
�2,w

⇣
A2+B2D2C2 A1B1

D2C2 C1A1B1+D1

⌘
is

zero unless all of the following conditions are met:

A1 2 �aw,w(t)
C1 2 ptwMbw⇥aw(Ow)

D2 2 �bw,w(t)
B2 2 ptwMaw⇥bw(Ow)

C2 2 Mbw⇥aw(Ow)

A2 2 p�t
w Maw⇥aw(Ow)

B1 2 Maw⇥bw(Ow)

D1 2 p�t
w Mbw⇥bw(Ow).

When all of the above conditions are met, we have the following factorization at
each prime w 2 ⌃p:

�1,w(Z 0
1, Z

00
2 )�2,w(Z 0

2, Z
00
1 )h⇡w(Z1)�w, ⇡̃w(Z2)�̃wi⇡w

= Vol(�aw,bw) · J1 · J2,
(77)

where

J1 = �2,w(det A1)
�1�(4)

w (D1)|det Daw
1 |1/2w h�bw , ⇡̃bw(D

�1
1 )�̃bw i⇡bw

(78)

J2 = �1,w(det D2)�
(1)
w (A2)|det Abw

2 |1/2w h�aw , ⇡̃aw(A2)�̃aw i⇡aw
. (79)

Proof. By Lemma 4.3.2 and the definition of �1,w, the product

�1,w

✓✓
A1 B2D2

C1A1 D2

◆◆
�2,w

✓✓
A2 + B2D2C2 A1B1

D2C2 C1A1B1 + D1

◆◆

is zero unless all of the above conditions are met. For the remainder of the proof,
we will work only with matrices meeting the above conditions. We now prove
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the second statement of the proposition. Note that when the above conditions are
met,

⇡w(Z1)�w = ⇡w

✓✓
1 0
C1 D1

◆◆
µ0

w

✓✓
A1 0
0 1

◆◆
�w,

⇡̃w(Z2)�̃w = ⇡̃w

✓✓
A2 B2

0 1

◆◆
(µ0

w)
�1

✓✓
1 0
0 D2

◆◆
�̃w.

So

�1,w(Z 0
1, Z

00
2 )�2,w(Z 0

2, Z
00
1 )h⇡w(Z1)�w, ⇡̃(Z2)�̃wi⇡w

= ��1
2,w(det A1)�1,w(det D2)

⌧
⇡w

✓✓
1 0
C1 D1

◆◆
�w, ⇡̃w

✓✓
A2 B2

0 1

◆◆
�̃w

�

⇡w

.

Let A 2 Maw(Kw), D 2 Mbw(Kw), C 2 Mbw⇥aw(Kw), and B 2 Maw⇥bw(Kw)
be matrices such that

✓
1 �B2

0 1

◆ ✓
1 0
C1 D1

◆
=

✓
1 0
C 1

◆ ✓
A 0
0 D

◆ ✓
1 B
0 1

◆
.

Then

A = 1 � B2C1 2 1+ p2twMaw(Ow)

CA = C1 2 ptwMbw⇥aw(Ow)

AB = �B2D1 2 Maw⇥bw(Ow).

So

C 2 ptwMbw⇥aw(Ow)

B 2 Maw⇥bw(Ow)

D = D1 � CAB = (1+ CB2)D1 2 (1+ p2t Mbw(Ow))D1.

Therefore, applying the invariance conditions (66) and (69) we obtain
⌧
⇡w

✓✓
1 0
C1 D1

◆◆
�w, ⇡̃w

✓✓
A2 B2

0 1

◆◆
�̃w

�

⇡w

=

⌧
⇡w

✓✓
1 �B2

0 1

◆ ✓
1 0
C1 D1

◆◆
�w, ⇡̃w

✓✓
A2 0
0 1

◆◆
�̃w

�

⇡w

=

⌧
⇡w

✓✓
1 0
C1 1

◆ ✓
1 0
0 D1

◆◆
�w, ⇡̃w

✓
A2 0
0 1

◆
�̃w

�

⇡w
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=

⌧
⇡w

✓✓
1 0
0 D1

◆◆
�w, ⇡̃w

✓✓
A2 0
0 1

◆ ✓
1 0

�C1A2 1

◆◆
�̃w

�

⇡w

=

⌧
⇡w

✓✓
1 0
0 D1

◆◆
�w, ⇡̃w

✓✓
A2 0
0 1

◆◆
�̃w

�

⇡w

=

⌧
�w, ⇡̃w

✓✓
A2 0
0 D�1

1

◆◆
�̃w

�

⇡w

.

Note that since r > 2t , A2 2 p
�b r

2 c
w Maw(Ow) and D1 2 p

�b r
2 c

w Mbw(Ow).
From the definition of �w we find that the support of 'w 2 IndGLn

Raw,bw
(⇡aw ⌦⇡bw)

inside of GLn(Ow) is �aw,bw . It follows that
⌧
�w, ⇡̃w

✓✓
A2 0
0 D�1

1

◆◆
�̃w

�

⇡w

= Vol(�aw,bw)

· h'w(1), |det Abw
2 det Daw

1 |1/2w ⇡̃aw(A2) ⌦ ⇡̃bw(D
�1
1 )'̃w(1)i⇡aw⌦⇡bw

.

As 'w(1) = �aw ⌦ �bw and '̃(1) = �̃aw ⌦ �̃bw by definition,

h'w(1), ⇡̃aw(A2) ⌦ ⇡̃bw(D
�1
1 )'̃w(1)i⇡aw⌦⇡bw

= h�aw , ⇡̃aw(A2)�̃aw i⇡aw
· h�bw , ⇡̃bw(D

�1
1 )�̃bw i⇡bw

.

Consequently,

�1,w(Z 0
1, Z

00
2 )�2,w(Z 0

2, Z
00
1 )h⇡w(Z1)�w, ⇡̃w(Z2)�̃wi⇡w

= Vol(�aw,bw) · J1 J2,

where

J1 = �2,w(det A1)
�1�(4)

w (D1)|det Daw
1 |1/2w h�bw , ⇡̃bw(D

�1
1 )�̃bw i⇡bw

(80)

J2 = �1,w(det D2)�
(1)
w (A2)|det Abw

2 |1/2w h�aw , ⇡̃aw(A2)�̃aw i⇡aw
. (81)

COROLLARY 4.3.8. The integral Zw factors as

Zw = Vol(�aw,bw) · I1 · I2,

I1 =
Z

GLbw (Kw)

�2,w(det D)�(4)
w (D)|det D|

s+ bw
2

w h⇡bw(D)�bw , �̃bw i⇡bw
d⇥D

I2 =
Z

GLaw (Kw)

��1
1,w(det A)�

(1)
w (A)|det A|s+

aw
2

w h�aw , ⇡̃aw(A)�̃aw i⇡aw
d⇥A.
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Proof. By Equation (74) and Proposition 4.3.7,

Zw = Vol(�w)
�1

⇥
Z

A1,A2,B1,B2,C1,C2,D1,D2

�2,w(det(A1) det(D1))�
�1
1,w(det(A2) det(D2))

⇥ |det(A1) det(D1) det(A2) det(D2)|
s+ n

2
w Vol(�aw,bw)J1 J2

⇥ |det Abw
1 det D�aw

1 |w|det A�bw
2 det Daw

2 |wd⇥A1

⇥ d⇥A2 dB1 dB2 dC1 dC2 d⇥D1 d⇥D2, (82)

where J1 and J2 are defined as in Equations (80) and (81), respectively, and

A1 2 �aw(t)

C1 2 ptw
Y

w|p

Mbw⇥aw(Ow)

D2 2 �bw(t)

B2 2 ptw
Y

w|p

Maw⇥bw(Ow)

C2 2
Y

w|p

Mbw⇥aw(Ow)

A2 2 p�t
w

Y

w|p

Maw⇥aw(Ow)

B1 2
Y

w|p

Maw⇥bw(Ow)

D1 2 p�t
w

Y

w|p

Mbw⇥bw(Ow).

Note that for such A1 and D2, |det A1|w = |det D2|w = 1. Applying Equations
(80) and (81), we therefore see that the integrand in Equation (82) equals

�2,w(det D1)�
(4)
w (D1)h⇡bw(D1)�bw , �̃bw i⇡bw

|D1|
s+ bw

2
w

⇥ ��1
1,w(det A2)�

(1)
w (A2)h�aw , ⇡̃aw(A2)�̃aw i⇡aw

|A2|
s+ aw

2
w .

Therefore,

Zw = Vol(�w)
�1Vol(�w)(Vol(Maw⇥bw(Ow)))

2Vol(�aw,bw)

⇥
Z

GLbw (Kw)

�2,w(det D1)�
(4)
w (D1)h⇡bw(D1)�bw , �̃bw i⇡bw

|D1|
s+ bw

2
w d⇥D1
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⇥
Z

GLaw (Kw)

��1
1,w(det A2)�

(1)
w (A2)h�aw , ⇡̃aw(A2)�̃aw i⇡aw

|A2|
s+ aw

2
w d⇥A2

= Vol(�aw,bw) ⇥
Z

GLbw (Kw)

�2,w(det D)�(4)
w (D)h⇡bw(D)�bw , �̃bw i⇡bw

⇥ |D|
s+ bw

2
w d⇥D

⇥
Z

GLaw (Kw)

��1
1,w(det A)�

(1)
w (A)h�aw , ⇡̃aw(A)�̃aw i⇡aw

|A|s+
aw
2

w d⇥A.

4.3.9. The main local theorem. In Theorem 4.3.10, we calculate the integrals
I1 and I2 from Corollary 4.3.8.

THEOREM 4.3.10. The integrals I1 and I2 are related to familiar L-functions as
follows.

I1 =
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

� · Vol(X(4)) · h�bw , �̃bw i⇡bw

I2 =
"
�
�s + 1

2 ,⇡aw ⌦ �1,w
�
L

� 1
2 + s, ⇡̃aw ⌦ ��1

1,w

�

L
�
�s + 1

2 ,⇡aw ⌦ �1,w
� · Vol(X(1)) · h�aw , �̃aw i⇡aw

.

Consequently, upon setting Vw := Vol(X(1))Vol(X(4)),

Zw =
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�
· "

�
�s + 1

2 ,⇡aw ⌦ �1,w
�
L

� 1
2 + s, ⇡̃aw ⌦ ��1

1,w

�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

�
· L

�
�s + 1

2 ,⇡aw ⌦ �1,w
�

·Vw · h�w, �̃wi⇡w
,

and thus
Iw = L(s + 1

2 , ord,⇡w,�w) ·Vw · h�w, �̃wi⇡w
, (83)

where L(s + 1
2 , ord,⇡w,�w) is the ratio of L-factors and "-factors that appear

in the formula for Zw.

Proof. The integrals I1 and I2 are of the same form as the ‘Godement–Jacquet’
integral defined in [Jac79, Equation (1.1.3)]. Applying the ‘Godement–Jacquet
functional equation’ in [Jac79, Equation (1.3.7)], we obtain

I1 =
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

�

⇥
Z

GLbw (Kw)

(�(4)
w )^(D)|det D|

�s+ bw
2

w ��1
2,w(D)h�bw , ⇡̃bw(D)�̃bw i⇡bw

d⇥D,

(84)

where (�(4)
w )^ denotes the Fourier transform of �(4)

w .
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From its definition,

(�(4)
w )^(D) = �⌫w

✓✓
1aw 0
0 D

◆◆
. (85)

In particular, the support of (�(4)
w )^ is X(4) = t�bw�bw . Let D = �1�2, �1 2 t�bw

and �2 2 �bw . Applying Equations (62) and (69) and the definition of �⌫w we see
that

h�bw , ⇡̃bw(D)�̃bw i⇡bw
= h⇡bw(�

�1
1 )�bw , ⇡̃bw(�2)�̃bw i⇡bw

= µ0
bw(�

�1
1 )µbw(�

�1
2 )h�bw , �̃bw i⇡bw

= �2,w(D)�⌫w

✓✓
1aw 0
0 D

◆◆�1

h�bw , �̃bw i⇡bw
.

Plugging this into Equation (84) and applying Equation (85), we obtain

I1 =
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

� · Vol(X(4)) · h�bw , �̃bw i⇡bw
.

The computation of I2 is similar. The consequence for Iw then follows from
Corollary 4.3.8 and Equations (71) and (51).

REMARK 4.3.11. Let !aw denote the central quasicharacter of ⇡aw . Then

"

✓
�s +

1
2
,⇡aw ⌦ �1,w

◆
=

!aw(�1)
"
�
s + 1

2 , ⇡̃aw ⌦ ��1
1,w

� .

So we may rewrite I2 as

I2 =
!aw(�1)L

� 1
2 + s, ⇡̃aw ⌦ ��1

1,w

�

"
�
s + 1

2 , ⇡̃aw ⌦ ��1
1,w

�
L

�
�s + 1

2 ,⇡aw ⌦ �1,w
� · Vol(X(1)),

and hence Iw/V as

Iw
V

=
!aw(�1)L

� 1
2 + s, ⇡̃aw ⌦ ��1

1,w

�

"
�
s + 1

2 , ⇡̃aw ⌦ ��1
1,w

�
L

�
�s + 1

2 ,⇡aw ⌦ �1,w
�

⇥
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

� .

Therefore, the Euler factor at p, which is the product
Y

w|p

L
✓
s +

1
2
, ord,⇡w,�w

◆
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of the factors defined in equation (83), can also be written

Y

w|p

!aw(�1)L
� 1
2 + s, ⇡̃aw ⌦ ��1

1,w

�

"
�
s + 1

2 , ⇡̃aw ⌦ ��1
1,w

�
L

�
�s + 1

2 ,⇡aw ⌦ �1,w
�

⇥
L

�
s + 1

2 ,⇡bw ⌦ �2,w
�

"
�
s + 1

2 ,⇡bw ⌦ �2,w
�
L

�
�s + 1

2 , ⇡̃bw ⌦ ��1
2,w

� . (86)

Note the similarity of the form of the zeta integral at p in Equation (86) with
the form of the modified Euler factor at p for the p-adic L-functions predicted
by Coates in [Coa89, Section 2, Equation (18b)].

REMARK 4.3.12. The factor Vw can be written as

Vw =
Vol(�R,w) · Vol(t�R,w)

Vol(�R,w \ t�R,w)
(87)

for any r > 1. From this we conclude that

Iw
Vol(�R,w) · Vol(t�R,w)

= L
✓
s +

1
2
, ord,⇡w,�w

◆
h�w, �̃wi⇡w

Vol(�R,w \ t�R,w)
.

The right-hand side (and hence the left-hand side) is easily seen to be
independent of r .
In order to explain the cancelation of various intermediate volume factors

appearing along the way to the final expression for the values of our p-adic
L-function in Theorem 9.2.2, we identify the volumes in this last expression (in
a special case) with volumes of groups defined elsewhere.
Suppose that ni,w = 1 for all i . Then Rw is just the Borel Bw and �R,w = I 0w,r ,

where I 0w,r is the w factor of the image of I 0r,V = I 0r under the isomorphism (14).
Then t�R,w = tI 0w,r can be identified with the corresponding factor of I 0r,�V .

4.4. Holomorphic representations of enveloping algebras and anti-
holomorphic vectors.

4.4.1. Holomorphic and anti-holomorphic modules. Throughout this section,
we identify⌃ with⌃K+ , and we identify each element � 2 ⌃ with the restriction
� |K+ . To simplify notation, we let G⇤ = GU+

1 = RK/Q GU+(V ) where GU+(V )
denotes the full unitary similitude group of V . Thus, G⇤(R) =

Q
�2⌃

K+
G� ,

with G� = GU+(V )K+
�

' GU+(a� , b� ). For any h : RC/R(Gm,C) ! G⇤
R as

in Section 2.1, the image of h is contained in the subgroup G of (g� , � 2 ⌃K+)
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for which the similitude factor ⌫(g� ) is independent of � , and it is to this latter
subgroup that the Shimura variety is attached.
Let U1 = C(R) ✓ G(R) and X be as in Section 2.7.1. We assume U1 is

the centralizer of a standard h as in Section 2.3.2; let U� ⇢ G� denote its
intersection with G� and let Ko

� ⇢ U� denote its maximal compact subgroup;
Ko

� is isomorphic to the product of compact unitary groups U (a� ) ⇥ U (b� ). We
have

k� := Lie(U� ) = z� � Lie(Ko
� )

where z� is the R-split center of g� := Lie(GU+(a� , b� )). We let U (g� ) denote
the enveloping algebra of g� .
For � 2 ⌃K+ , we write the Harish–Chandra decomposition

g� = k� � p�
� � p+� .

Because h was chosen to be standard, this decomposition is naturally defined
over � (K) ⇢ C. For any irreducible representation (⌧� ,W⌧�

) of U� of G� :=
G(K+

� ), we let
D(⌧� ) = U (g� )

O

U (k� �p�
� )

W_
⌧�
. (88)

We have assumed that our chosen h takes values in a rational torus T (=
J0,n) ⇢ G (so that (T, h) is a CM Shimura datum), and let T� ⇢ G� be the
� -component of T (R), t� its Lie algebra. We choose a positive root system R+

�

for T� so that the roots on p+� are positive, and let b+� be the corresponding Borel
subalgebra.
Let R+,c

� ⇢ R+
� be the set of positive compact roots. The highest weight of

⌧� relative to R+,c
� can be denoted � = (c� ; 1,� > · · · > a� ,� ; 

c
1,� > · · · >

c
b� ,�

) 2 Z ⇥ Za� ⇥ Zb� , where c� is the character of z� . We call (⌧� ,W⌧�
)

strongly positive if there exists an irreducible representation W� of G� , with
highest weight µ = (�c� ; a1 > · · · > an) 2 Z ⇥ Zn relative to R+

� , such that,
setting a = a� and b = b� ,

(a1, . . . , an) = (�c
b,� � a, . . . ,�c

1,� � a;�a,� + b, . . . ,�1,� + b); (89)

in other words, if and only if �c
1,� �a > �a,� +b. The contragredient ofD(⌧� )

is denoted
Dc(⌧� ) = D(⌧� )

_ ⇠= U (g� )
O

U (k� �p+� )

W⌧�
. (90)

It is the complex conjugate representation of D(⌧� ) with respect to the R-
structure on g� ; we call this the anti-holomorphic representation of type ⌧� .
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In what follows, we usually write D(� ) instead of D(⌧� ). It is well known
that if ⌧� is strongly positive then D(� ) (respectively Dc(� )) is the (U (g� ),
U� )-module of a holomorphic (respectively anti-holomorphic) discrete series
representation of G� , and moreover that

dim Hab(g� ,U� ;D(� ) ⌦ W� ) = dim Hab(g� ,U� ;Dc(� ) ⌦ W
_
� ) = 1

with W� the representation with highest weight given by (89), and W_
� its dual,

with highest weight

(c� ;�an, . . . ,�a1) = (c� ; 1,� �b; . . . , a,� �b, c
1,� +a, . . . , c

b,� +a). (91)

The minimal U� -type of D(� ) (respectively of Dc(� )) is the subspace

1⌦W_
⌧�

⇢ U (g� )⌦U (k� �p�
� ) W

_
⌧�

(respectively 1 ⌦ W⌧�
⇢ U (g� ) ⌦U (k� �p+� ) W⌧�

).

The minimal U� -type of D(� ) (respectively of Dc(� )) is also called the space
of holomorphic vectors (respectively anti-holomorphic vectors).

4.4.2. Canonical automorphy factors and representations. The (U (g� ),U� )
module D(� ) can be realized as a subrepresentation of the right regular
representation on C1(G� ) generated by a canonical automorphy factor. We
recall this construction below when G� = G4,� ' GU(n, n) and ⌧� is a scalar
representation.
Let Mn be the affine group scheme of n ⇥ n-matrices over Spec(Z), Mn =

Spec(P(n)). For � 2 ⌃ , let P(n)� denote the base change of P(n) to O� =
� (OK). Corresponding to the factorization G⇤(R) =

Q
� G� , we write X =Q

�2⌃ X� . The maximal parabolic Pn , together with U� , defines an unbounded
realization of a connected component X+

� ⇢ X� as a tube domain in p+4,� [Har86,
(5.3.2)]. A choice of basis for L1, together with the identification of V with Vd

and V d introduced in Section 4.1.1, identifies p+4,� with Mn(C) and therefore
identifies X+

� with a tube domain in Mn(C). Let j� 2 X+
� be the fixed point of

U� . Without loss of generality, we may assume j� to be a diagonal matrix with
values in � (K) whose entries have trace zero down toK+. Then X+

� is identified
with the standard tube domain

Xn,n := {z 2 Mn(C) | j� (
t z̄ � z) > 0}.

With respect to this identification, any g� =
�a� b�
c� d�

�
2 G� acts by g� (z) = (a� z+

b� )(c� z + d� )
�1. (Here a� , b� , c� , and d� are n ⇥ n matrices.)
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For z = (z� )�2⌃ 2 X =
Q

�2⌃ X� and g = (g� )�2⌃ 2
Q

�2⌃ G(R), let

J 0(g� , z� ) = c� · tz� + d� J 0(g, z) =
Y

�2⌃

J 0(g� , z� )

J (g� , z� ) = c� z� + d� J (g, z) =
Y

�2⌃

J (g� , z� ).

Let

jg�
(z� ) = j (g� , z� ) = det J (g� , z� )

(= ⌫(g� )
�n det(g� ) det(J 0(g� , z� )) = ⌫(g� )

n det(g� )
�1 det(J 0(g� , z� ))

jg(z) = j (g, z) =
Y

�2⌃

jg�
(z� ).

Fix � 2 ⌃ . For g 2 G� , let

J (g) = J (g, j� ); J 0(g) = J 0(g, j� ).

These are C1-functions on G� with values in GL(n,C), and any polynomial
function of J and J 0 is annihilated by p�

� and is contained in a finite-dimensional
k� subrepresentation of C1(G� ). Similarly, let

j (g) = det(J (g)); j 0(g) = det(J 0(g)),

viewed as C1-functions on G� with values in C⇥.
Let � = k • km · �0 be an algebraic Hecke character of K, where m 2 Z and

�0,� (z) = z�a(�� ) z̄�b(�� )

for any archimedean place � . Define D2(�� ) = D2(m,�0,� ) to be the
holomorphic (Lie(G4,� ),U� )-module with highest U� -type

⇤(�� ) = ⇤(m,�0,� ) = (m � b(�� ),m � b(�� ), . . . ,m � b(�� );

�m + a(�� ), . . . ,�m + a(�� ); •)

in the notation of [Har97, (3.3.2)]. Here • is the character of theR-split center of
U� (denoted c in [Har97]), which we omit to specify because it has no bearing
on the integral representation of the L-function. We define a map of (U (g� ),U� )-
modules

◆(�� ) : D2(�� ) ! C1(G� ) (92)

as follows. Let v(�� ) be the tautological generator of the ⇤(m,�0,� )-isotypic
subspace (highest U� -type subspace) of D2(m,�� ). Let

◆(�� )(v(�� )) = J��
(g) := j (g)�m+a(�� ) · j 0(g)�m+b(�� )⌫(g)n(m+a(�� )+b(�� ))
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and extend this to a map of U (g� )-modules. Let C(G� ,�� ) denote the image of
◆(�� ).

REMARK 4.4.3. Note that J��
depends only on the archimedean character �� =

k • km
� �0,� .

We will only take m in the closed right half-plane bounded by the center of
symmetry of the functional equation of the Eisenstein series, as in [Har08].
For such m, the restriction of D2(m,�0,� ) to U3,� = U (a� , b� ) ⇥ U (b� , a� )
decomposes as an infinite direct sum of irreducible holomorphic discrete series
representations of the kind introduced in 4.4.1:

D2(m,�0,� ) =
M

� 2C3(m,�0,� )

D(� )⌦D([
� ⌦�0,� ) =

M

� 2C3(�� )

D(� )⌦D([
� ⌦�� )

(93)
where C3(�� ) = C3(m,�0,� ) is a countable set of highest weights:

C3(�� ) = {(�m + b(�� ) � ra�
, . . . ,�m + b(�� ) � r1;

m � a(�� )+ s1, . . . ,m � a(�� )+ sb�
)} (94)

where
r1 > r2 > · · · > ra�

> 0; s1 > s2 > · · · > sb�
> 0. (95)

(Note the change of sign relative to ⇤(�� )! This is due to the duality in the
definition (88). Compare [Har97, Lemma 3.3.7] when a(�s) = 0.) There is an
explicit formula for [ in (121), but the simplest explanation is probably that,
if we identify holomorphic representations of U (b� , a� ) with anti-holomorphic
representations of U (a� , b� ), then

D([
� )

⇠
�! D(� )

_

as representations of U (a� , b� ).
For each � 2 ⌃ , we define

(↵(�� ),�(�� )) = (�m + b(�� ), . . . ,�m + b(�� );

m � a(�� ), . . . ,m � a(�� )) 2 Za�+b�

and let
(↵(�),�(�)) = (↵(�� ),�(�� ))�2⌃ . (96)

For  = (� )�2⌃ , with � 2 C3(�� ), we define

⇢� = � � (↵(�� ),�(�� )) = (�ra�
, . . . ,�r1; s1, . . . , sb�

);

⇢�
� = (r1, . . . , ra�

; s1, . . . , sb�
); ⇢ = (⇢� )�2⌃; ⇢

� = (⇢�
� )�2⌃ .

(97)
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The involution � on the parameters (ri , s j) corresponds to an algebraic
involution, also denoted �, of the torus T .
The algebraic characters ⇢, ⇢� , and  all determine one another and will be

used in the characterization of the Eisenstein measure in subsequent sections.
Note that the twist by �0,� coincides with the twist by �� because the norm of

the determinant is trivial onU (b� , a� ). We prefer to write the twist by �� , which
is more appropriate for parametrizing automorphic representations of unitary
similitude groups.

LEMMA 4.4.4. For such � , the map ◆(�� ) of (92) is injective for all � . In
particular, the image C(G� ,�� ) of ◆(�� ) is a free U (p+� )

⇠
�! S(p+� )-module

of rank 1.

Proof. Indeed, D2(�� ) is always a free rank one U (p+� )-module, and for m in
the indicated range is irreducible as U (g� )-module. Since ◆(�� ) is not the zero
homomorphism, it is therefore injective.

DEFINITION 4.4.5. Let  = (� , � 2 ⌃), where for each � , � is the highest
weight of an irreducible representation ⌧� of U� . Let (�� , � 2 ⌃) be the
archimedean parameter of an algebraic Hecke character � of K. The pair (,
�) (or the triple (,m,�0)) is critical if � 2 C3(�� ) for all � 2 ⌃ .
If ⇡ is an anti-holomorphic automorphic representation of G1 of type  , we

say (⇡,�) is critical if (,�) is critical.

REMARK 4.4.6. When K is imaginary quadratic, the discussion in [Har97,
Section 3] shows that, for fixed ⇡ and � , the set of m such that (⇡,m,�0) is
critical is exactly the set of critical values of L(s+ 1

2 ,⇡,�) greater than or equal
to the center of symmetry of the functional equation. The same considerations
show that this is true for an arbitrary CM field. The verification is simple but
superfluous unless one wants to compare the results of the present paper to
conjectures on critical values of L-functions.

Let v�
⌦ v

[
� ⌦��

denote a highest weight vector in the minimal K3-type of
D(� ) ⌦ D([

� ⌦ �� ), relative to a choice of compact maximal tori in U3,� as
in 4.4.1. The holomorphic module D2(�� ) is a free rank one module overU (p+4 ),
generated by v(�� ) 2 ⇤(�� ). There is therefore a unique element ��� ,�

2 U (p+4 )
such that

��� ,�
· v(�� ) = v�

⌦ v
[
� ⌦��

. (98)
The differential operator ��� ,�

depends on the choice of basis vectors but is
otherwise well defined up to scalar multiples. The module D(� ) ⌦ D([

� ⌦ �� )
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has a natural rational structure over the field of definition E(⌧� ,�� ) of ⌧� ⇥ ⌧ [
� ⌦

�� . Let span(v�
⌦ v

[
� ⌦��

) denote the E(⌧� ,�� )-line in D(� ) ⌦ D([
� ⌦ �� )

spanned by the indicated vector. We always choose v�
⌦ v

[
� ⌦��

to be rational
over E(⌧� ,�� ).

4.4.7. Holomorphic projection. We let pr,� : D2(�� ) ! D(� )⌦D([
� ⌦�� )

denote the natural projection and

prhol,� = prhol;a� ,b�
,� : D2(�� ) ! span(v�

⌦ v
[
� ⌦��

)

denote pr,� followed by orthogonal projection on the highest weight component
of the holomorphic subspace. Let

D2(�� )
hol;a� ,b� =

M

� 2C3(m,�� )

im(prhol,� )

and let
prhol =

M
prhol,� : D2(�� ) ! D2(�� )

hol;a� ,b� .

Because we have chosen h standard, the enveloping algebra U (g� ) and its
subalgebra U (p+4,� ) ' S(p+4,� ) have models over O� . We define an isomorphism
of O� algebras

S(p+4,� )
⇠

�! P(n)� (99)

using the identification of Section 4.4.2.
Let n = a� + b� be a signature at � . We write X 2 Mn in the form

X =
�A(X) B(X)
C(X) D(X)

�
with A(X) 2 Ma�

(an a� ⇥ a� ) block, D(X) 2 Mb�
, and

B(X) and C(X) rectangular matrices. With respect to this decomposition and
the isomorphism (99) we obtain a natural map

j (a� , b� ) : P(a� )� ⌦ P(b� )� ,! P(n)�
⇠

�! U (p+4,� ).

For i = 1, . . . , a� (respectively j = 1, . . . , b� ) let �i(X) (respectively �0
j(X))

be the element of P(a� )� (respectively P(b� )� ) given by the i th minor of A
(respectively the j th minor of D) starting from the upper left corner. Let r1,� >
· · · > ra� ,� > ra�+1,� = 0, s1,� > · · · > sb� ,� > sb�+1,� = 0 be descending
sequences of integers as in Inequalities (95). Let

r̃i,� = ri,� � ri+1,� , i = 1, . . . , a� ; s̃ j,� = s j,� � s j+1,� , j = 1, . . . , b� .

and define p(r̃� , s̃� ) 2 P(n)� by

p(r̃� , s̃� )(X) = j (a� , b� )

✓ a�Y

i=1

�i(X)r̃i,� ·
b�Y

j=1

�0
j(X)

s̃ j,�

◆
. (100)
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Let �(r̃� , s̃� ) 2 U (p+� ) be the differential operator corresponding to p(r̃� , s̃� )
under the isomorphism (99).
The group GL(a� )⇥GL(a� ) (respectively GL(b� )⇥GL(b� )) acts on P(a� )�

(respectively P(b� )� ) by the map (g1, g2)(X) = tg�1
1 Xg2, and the action

preserves the grading by degree. With respect to the standard upper-triangular
Borel subgroups, we can index representations of GL(a� ) (respectively GL(b� ))
by their highest weights, which are a� -tuples of integers r1 > r2 > · · · > ra�

(respectively b� -tuples s1 > s2 > · · · > sb�
). The following is a statement of

classical Schur–Weyl duality:

LEMMA 4.4.8. Let u = a� or b� . As a representation of GL(u) ⇥ GL(u), the
degree d-subspace P(u)d� ⇢ P(u)� decomposes as the direct sum

P(u)d�
⇠

�!
M

µ

[Fµ,_ ⌦ Fµ]

where µ runs over r-tuples c1 > c2 > · · · > cu > 0 such that
P

i ci = d.
Moreover, if µ = c1 > c2 > · · · > cu > cu+1 = 0, the highest weight space
Fµ,+ ⇢ [Fµ,_ ⌦ Fµ] is spanned by the polynomial �µ =

Qr
i=1 �

ci�ci+1
i .

Proof. This is the case n = k = r of [GW09, Theorem 5.6.7].

Define the (one-dimensional) highest weight space Fµ,+ as in the statement
of the lemma, and write

P(u)+� =
M

µ

F
µ,+.

Recall the notation of (97).

COROLLARY 4.4.9. Let (,�) be critical. For each � 2 ⌃ , there is a unique
a� + b� -tuple

⇢�
� = (r1,� > · · · > ra� ,� > 0; s1,� > · · · > sb� ,� > 0)

as above such that

prhol,� (�(r̃� , s̃s) · v(�� )) = P� ,� ,� · v�
⌦ v

[
� ⌦��

with P� ,� ,� a nonzero scalar in E(⌧� ,�� )
⇥.

We write

D(⇢�
� ) = D(� ,�� ) = �(r̃� , s̃� ), D(⇢�) = D(,�) =

Y

�

D(� ,�� )
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and

Dhol(⇢�
� ) = Dhol(� ,�� ) = prhol,� �(r̃� , s̃� ),

Dhol(⇢�) = Dhol(,�) =
Y

�

Dhol(� ,�� )

for these choices of (ri,� ; s j,� ). Then for all † 6  there exist unique elements
�(, †) 2 U (p+3 ), defined over algebraic number fields, such that

D(,�) =
X

†6

�(, †) � Dhol(†,�);

�(, ) is the scalar
Q

� P� ,� ,� .

Proof. Consider j (a� , b� )(P(a� )
+
� ⌦ P(b� )

+
� ) ⇢ P(n)� . This is the space

spanned by the p(r̃� , s̃� ) defined in (100). Let �(a� , b� )
+ ⇢ U (p+� ) be the

subspace identified with j (a� , b� )(P(a� )
+
� ⌦P(b� )

+
� ) by the isomorphism (99).

The decomposition (93) is based on the fact that the composition

�(a� , b� )
+ ⌦ v(�� ) ,! D2(�� )

prhol
! D2(�� )

hol;a� ,b�

is an isomorphism. See the discussion in [Har86, Section 7.11].
This does not say that �(r̃� , s̃� )⌦v(�� ) lies in the highest weight space of the

holomorphic subspace of the direct factor D(� )⌦D([
� ⌦�� ) corresponding to

the a�+b� -tuple (r̃� , s̃� ); but it does say that its projection on that highest weight
space is nontrivial. This is equivalent to the first statement of the corollary. The
remaining statements are formal consequences of the decomposition (93) and the
fact that the decomposition is rational over an appropriate reflex field, cf. [Har86,
Lemma 7.3.2].

4.4.10. Differential operators on C1-modular forms. Let � = k • km�0 be an
algebraic Hecke character ofK, as before. We view G4 as the rational similitude
group of a maximally isotropic hermitian space V4; this allows us to write Sh(V4)
for the corresponding Shimura variety. Let ⇤(�) = (⇤(�� ), � 2 ⌃) be the
character ofU1 whose restriction toU� is⇤(�� ). Let L(�) be the 1-dimensional
space on which U1 acts by ⇤(�); it can be realized over a number field E(�1)
which depends only on �1. The dual of the highest U1-type ⇤(�), restricted
to the intersection of U1 with G4(R), defines an automorphic line bundle
L(�) on Sh(V4) with fiber at the fixed point h of U1 isomorphic to L(�). If
⇡ = ⇡1 ⌦ ⇡ f is an automorphic representation of G4, with ⇡1 a (Lie(G4),U1)
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module isomorphic to D2(�) =
N

�2⌃(D2(�� )) and ⇡ f an irreducible smooth
representation of the finite adeles of G4, then there is a canonical embedding

⇡ f
⇠

�! ⇡ f ⌦ H 0(Ph,U1;D2(�)⌦ L(�)) ,! H 0(Sh(V4)
tor,L(�)can). (101)

Write⌦ = ⌦Sh(V4) for the cotangent bundle. For any integer d > 0, and for any
ring O, let P(n)d(O) denote the O-module of O-valued polynomials of degree
d on the matrix space Mn , and let P(n)d,⇤(O) = HomO(P(n)d,O) denote the
dualO-module. There is a canonical action ofU1 onP(n)d , for every d, defined
over the field of definition E(h) of the standard CM point h stabilized byU� , and
even over its integer ring. The Maass operator of degree d, as defined in [Har86,
Section 7.9] is a C1-differential operator

�d� : L(�) ! L(�) ⌦ Symd ⌦. (102)

We can view the target of �d� as the automorphic vector bundle attached to the
representation L(�) ⌦ P(n)d,⇤ of U1, using the identification of Section 4.4.2
as in (99). We use the same notation to denote the action on the space A(G4) of
(not necessarily cuspidal) L(�)h-valued automorphic forms on G4:

�d� : A(G4, L(�)h) ! A(G4, L(�)h ⌦ P(n)d,⇤) (103)

where the notation denotes automorphic forms with values in the indicated vector
space. For any polynomial � 2 P(n)d ⌘ Symd p+4 we thus obtain a differential
operator

�d� (�) : A(G4, L(�)h) ! A(G4(Q)\G4(A), L(�)h); �d� (�)( f ) = [�d� ( f ) ⌦ �]
(104)

where the bracket denotes contraction P(n)d,⇤ ⌦ P(n)d ! E(h).
Finally, for each � define sequences r̃� and s̃� as in Section 4.4.7; let r̃ =

(r̃� ), s̃ = (s̃� ). Suppose
P

� [
P

i r̃i,� +
P

j s̃ j,� ] = d. Then we define p(r̃ , s̃) =Q
� p(r̃� , s̃� ) where the factors are as in (100), and let

�d� (r̃ , s̃) = �d� (p(r̃ , s̃)) : H
0(Sh(V4)

tor,L(�)can) ! A(G ,L(�)h). (105)

Under the isomorphisms (101), �d� (r̃ , s̃) is identified with the operator on the
left-hand side deduced from multiplying by the element p(r̃ , s̃), viewed as an
element of Symd p+4 , which maps H 0(Ph,U1;D2(�) ⌦ L(�)h) =

N
� Cv��

⌦
L(�)h to p(r̃ , s̃) ⌦ ⌦�Cv��

⌦ L(�)h 2 D2(�) ⌦ L(�)h .
The holomorphic differential operators of Corollary 4.4.9 define operators on

automorphic forms, as follows. Let S1
,V (K1,C) denote the space of C1 modular

forms of type  on Sh(V1), of level K1, and define S1
[,�V (K2,C) analogously.

The following Proposition restates [Har86, Proposition 7.11.11]:
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PROPOSITION 4.4.11. Let (,�) be critical as in Corollary 4.4.9. Fix a level
subgroup K4 ⇢ G4(A f ) and a subgroup K1 ⇥ K2 ⇢ G3(A f ) \ K4. There are
differential operators

D(,�) : H 0(K4Sh(V4)
tor,L(�)can)

! S1
,V (K1,C) ⌦ S1

[,�V (K2,C) ⌦ � � det;

Dhol(,�) : H 0(K4Sh(V4)
tor,L(�)can)

! S,V (K1,C) ⌦ S[,�V (K2,C) ⌦ � � det

which give the operators �d� (r̃ , s̃) and prhol � �d� (r̃ , s̃) upon pullback to functions
on G4(A) and restriction to G3(A).

4.4.12. The Hodge polygon. If ⇡ is a cuspidal automorphic representation
of GU(V ) whose component at � is an anti-holomorphic discrete series
representation of the form Dc(⌧� ), then its base change ⇧ to an automorphic
representation of GL(n)K (ignoring the split center) is cuspidal, cohomological,
and satisfies ⇧_ ⇠

�! ⇧ c, and therefore the associated `-adic Galois
representations have associated motives (in most cases), realized in the
cohomology of Shimura varieties attached to unitary groups, with specified
Hodge structures. In what follows, we fix � and attach a Hodge structure to the
anti-holomorphic representation Dc(⌧ ), according to the rule used to assign a
motive to ⇧ . The Hodge structure is pure of weight n � 1 and has the following
Hodge types, each with multiplicity one:

(1 � b + n � 1, b � 1), . . . , (a, n � 1 � a),
(n � 1 � a � c

b , 
c
b + a), . . . , (�c

1 , 
c
1 + n � 1),

(c
1 + n � 1,�c

1), . . . , (
c
b + a, n � 1 � a � c

b),
(n � 1 � a, a), . . . , (b � 1, 1 � b + n � 1).

(106)

Label the pairs in (106) (pi , qi), i = 1, . . . , 2n, in order of appearance; thus,
(pi , qi) is in the top row if and only if i 6 n.

HYPOTHESIS 4.4.13 (Critical interval hypothesis). We assume that the weights
(, c) are adapted to the signature (a, b) in the sense that, for every pair (pi , qi)
in the collection (106), pi 6= qi and pi > qi if and only if i 6 n.

One checks that Hypothesis 4.4.13 holds if and only if 2a > n�1 and�2c
1 >

n � 1. We define the Hodge polygon Hodge(, c) = Hodge(Dc(⌧ )), to be the
polygon in the right half-plane connecting the vertices (i, pi) with (pi , qi) the
pairs in (106).
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4.4.14. Specific anti-holomorphic vectors. When ⌧� is strongly positive with
highest weight  = � , we write D() = D(⌧� ), Dc() = Dc(⌧� ) when it is clear
that  is a weight and ⌧� is an irreducible representation. Let ⇡ be a cuspidal
automorphic representation of G with ⇡� = Dc() as above. In the computation
of the zeta integral, we use a factorizable automorphic form ' =

N
v 'v 2 ⇡ ,

with 'v a vector in the minimalU� -type 1⌦W_
⌧�
ofDc(). In practice, we choose

'v to be either the highest weight vector ',+ or the lowest weight vector ',� in
1⌦W_

⌧�
. If w0 is the longest element of the Weyl group of T� relative to R+

� , then
',+ (respectively ',�) is an eigenvector for T� of weight �w0() (respectively
of weight �).

4.5. Local zeta integrals at archimedean places.

4.5.1. Choices of local data. This material has been covered at length
in [Har97, Har08], so we can afford to be brief. Notation for induced
representations is as in Section 4.1.2 above. The notation for holomorphic
representations is as in Section 4.4.2. An easy computation, similar to that
in [Har97], yields

LEMMA 4.5.2. As subspaces of C1(G� ), ◆(m,�� )(D2(m,�� )) ⇢ I� (m � n
2 ,�).

REMARK 4.5.3. Note that we have omitted similitude factors here. Strictly
speaking, these should be included; but they do not change the theory in any
significant way.

4.5.4. Nonvanishing of I1. Let � be an archimedean place, f� = f� (�� , c) 2
I (�u,� ,m) the local section at � . We assume f� is of the form

f� (�� , c, g) = B(�� , � )D(� ,m,�u,� )Jm,�u,� (g), g 2 G4,� (107)

where Jm,�u,� 2 C1(G4) is the canonical automorphy factor introduced in
Section 4.4.2 and B(�� , � ) is a nonzero algebraic scalar. Let '� ⌦ '[

� be an
anti-holomorphic vector in the highest weight subspace of the minimal K� -type
of ⇡� ⌦ ⇡[

� .

PROPOSITION 4.5.5. The local factor I� ('� ,'
[
� , f� ,m) is not equal to 0.

Proof. If D(� ,�� ) is replaced by Dhol(� ,�� ) in (107), this follows
from [Har08, Remark (4.4)(iv)]. Since '� ⌦ '[

� is an anti-holomorphic vector,
the pairing of (the Eisenstein section) D(� ,�� )Jm,�� ,� with (the highest weight
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vector) '� ⌦'[
� factors through the projection of D(� ,�� )Jm,�� ,� onto Dhol(� ,

�� )Jm,�� ,� . The Proposition is thus a consequence of Corollary 4.4.9.

When the extreme K -type ⌧� = ⌧a� ,� ⌦ ⌧b� ,� in ⇡� is one-dimensional, the
archimedean zeta integrals have been computed in [Shi97, Shi00]. Garrett has
shown in [Gar08] that the archimedean zeta integrals are algebraic up to a
predictable power of the transcendental number ⇡ , which can be normalized
away. The zeta integrals at � depend only upon the local data at � . When
at least one of the two factors (⌧a� ,� , ⌧b� ,� ) of the extreme K -type is one-
dimensional, the archimedean zeta integrals are given precisely on [Gar08, page
12]; and furthermore, Garrett showed in [Gar08] that when both factors are
scalars, the archimedean zeta integrals are nonzero algebraic numbers. They
have not been computed in the more general case (that is when neither ⌧a� ,� nor
⌧b� ,� is one-dimensional). However, the analogous computation for the doubling
method for symplectic groups has been carried out in complete generality by Liu
in [Liu19a]; the result matches the factor predicted by Coates and Perrin-Riou
in [CPR89]. One of us (E.E.) plans with Liu to adapt her method to the current
situation.
In the meantime, we will be satisfied with the following result, due to

Garrett [Gar08].

PROPOSITION 4.5.6. Let I� (�� , � ) be the local zeta integral

I� (�� , � ) = I� ('� ,'
[
� , f� ,m),

where '� = '� ,�, '[
� = '

[
� ,�

and f� is given by (107). Then I� (�� , � ) is a
nonzero algebraic number.

REMARK 4.5.7. When � is a scalar representation, Shimura obtains an explicit
formula for the local zeta integral. In general, as explained at the end of [Har08,
Section 5], Garrett’s calculation actually determines the value of the integral up
to an element of a specific complex embedding of the CM field F . In that paper F
is imaginary quadratic, but the same reasoning applies in general. Undoubtedly
the calculation actually gives a rational number, but the method is based on the
choice of rational structures onU� and the aforementioned differential operators.
We do not need to use this more precise information here.

4.6. The global formula. We have now computed all the local factors of
the Euler product (51). The Proposition below summarizes the result of our
computation. Bear in mind that, although we write ' 2 ⇡ , we actually mean

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


E. Eischen, M. Harris, J. Li and C. Skinner 82

that ' 2 ⇡ , where the latter is the irreducible U1(A) constituent of ⇡ chosen as
in (47).
First, write � = k • km · �u with �u a unitary Hecke character of K. Denote

by �+ the restriction of �u to the idèles of K+; it is a character of finite order.
Let ⌘ = ⌘K/K+ denote the quadratic idèle class character of K+ attached to the
quadratic extension K/K+. For any finite place v of K+, define the Euler factor

Dv(�) =
n�1Y

r=0

Lv(2m + n � r,�+ · ⌘r ).

(In the notation of Equation (53), we have Dv(�) = dn,v(m,�v).) For any finite
set S of finite places, let

DS(�) =
Y

v /2S

Dv(�); D(�) = D;(�), (108)

where the product is taken over finite places.

THEOREM 4.6.1. Let the test vectors ' 2 ⇡ and '[ 2 ⇡[ be chosen to be
factorizable vectors as in (48), with the local components at p and 1 given
as in (49) and (50), respectively. Assume the local components at finite places
outside S = S⇡ are unramified vectors, and the local choices at ramified places
are as in 4.2.2. Moreover, assume the Siegel–Weil section fs 2 I (� , s) is chosen
as in the preceding sections. Write � = k • km�u. Then we have the equality

D(�) · I (','[, f, s) = h','[i · Ip(� , )I1(� , ⇢�)IS LS(s + 1
2 ,⇡,�u)

where

IS =
Y

v2S

Dv(�) · volume(Uv),

I1(� , ) =
Y

�

I� (�� , � )

is the product of factors described in Proposition 4.5.6,

Ip = Lp(s, ord,⇡,�) ⇥
Y

w

[Vw · h�w, �̃wi⇡w
],

where Vw is the factor that appears in (83), and we define

Lp(s, ord,⇡,�) :=
Y

w|p

L(s, ord,⇡w,�w).

Finally, h•, •i is the L2 inner product on cusp forms.
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REMARK 4.6.2. In light of (87) and the identification of volumes in
Remark 4.3.12, the expression for Ip can be rewritten as

Ip
Vol(I 0r,V )Vol(I 0r,�V )

= Lp(s, ord,⇡,�)
Q

wh�w, �̃wi⇡w

Vol(I 0r,V \ I 0r,�V )
.

Part III: Ordinary families and
p-adic L-functions

5. Measures and restrictions

This section focuses on measures and restrictions. In particular, Section 5.3
gives a measure whose values at certain specified characters are the Eisenstein
series associated to the local data chosen when we calculated the zeta integrals
above.

5.1. Measures: generalities. Let X be a compact and totally disconnected
topological space. For a p-adic ring R we let C(X, R) be the R-module of
continuous maps from X to R (continuous with respect of the p-adic topology on
R). Note that C(X,Zp) ⌦̂Zp R

⇠
�! C(X, R). Let M be a p-adically complete

R-module. Then by an M-valued measure on X we mean an element of the R-
module

Meas(X,M) = HomZp(C(X,Zp),M) = HomR(C(X, R),M).

Suppose X is a profinite abelian group. Then Meas(X, R) is identified with
the completed group ring R[[X ]]. In particular, Meas(X, R) is itself a ring. The
following lemma is immediate:

LEMMA 5.1.1. Suppose X = X1 ⇥ X2 is a product of profinite abelian groups.
Then there is a natural isomorphism

Meas(X1 ⇥ X2, R)
⇠

�! Meas(X1,Meas(X2, R)).

If we write X = lim
 �i

X/Xi , where X = X0 � X1 � X2 � · · · is a
neighborhood basis of the identity consisting of open subgroups of X of finite
index, then

⇤X,R = R[[X ]] = lim
 �
i

R[X/Xi ].
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This is a compact topological ring. The following dictionary is well known and
due to Mazur:

FACT 5.1.2. The identification of a measure µ on X with an element f of ⇤X,R

has the property that, for any continuous homomorphism � : X ! R⇥
1 , with R1

a p-adic R-algebra,
Z

X
� dµ := µ(�) = �( f )

where �( f ) is the image of f under the homomorphism ⇤X,R ! R1 induced
by � .

We let � denote the homomorphism ⇤X,R ! R of Fact 5.1.2; in this way �
defines an R-valued point of ⇤X,R .
In what follows, characters of X1 will be Hecke characters, X2 will be the

group of integral points of a p-adic torus, whose characters parametrize weights
of p-adic modular forms, and M will be the ring of p-adic modular forms.
When X2 is a point, the measure on X = X1 will be an Eisenstein measure
that pairs with modular forms of fixed weight, and in particular can be used to
construct what we will call, loosely and somewhat abusively, a p-adic L-function
of one variable, the variable Hecke character, attached to a fixed holomorphic
automorphic representation. When X2 is the group of points of a nontrivial torus,
we will be constructing p-adic L-function of two variables, the second variable
running through the points of a Hida family.
The following is a version of a well-known lemma (see [Kat78, Proposition

4.1.2] for the formulation below):

LEMMA 5.1.3. Suppose X = lim
 �m

Xm is a profinite abelian group. Suppose R
is a ring that is flat over Z p and that contains a primitive nth root of unity
for each n dividing the order of Xm for some m. Each R-valued measure
on X is completely determined by its values on locally constant continuous
homomorphisms � : X ! R, and any function ↵ from the continuous characters
to R determines an R-valued measure on X whenever the values of ↵ on the
space of R-valued locally constant characters on X satisfy the usual Kummer
congruences (as in [Kat78, Section 4.0]).

5.2. The space X p. For each integer r > 0, let

Ur = (O ⌦ bZp)⇥ ⇥ (1+ prO ⌦ Zp) ⇢ (K ⌦ bZ)⇥
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and
X p = lim

 �
r

K
⇥\(K ⌦ bZ)⇥/Ur .

This is the projective limit of the ray class groups of K of conductor (pr ). In
particular, it is a profinite abelian group. More generally, if N0 is prime to p, we
let

X p,N0 = lim
 �
r

K
⇥\(K ⌦ bZ)⇥/Ur,N0

where Ur,N0 = (1+ N0O ⌦ bZp)⇥ ⇥ (1+ prO ⌦ Zp) ⇢ Ur .

5.2.1. Admissible measures on X p. We suppose now that we are in the
situation of Section 3, and we freely use the notation and conventions introduced
therein. Using the isomorphism (36) we identify H1(Zp) with H2(Zp) via h1 =
(h1,w)w|p 7! h2 = (h2,w)w|p with h2,w = h1,w̄. This then identifies TH2(Zp) with
TH1(Zp) and TH4(Zp) = TH3(Zp) = TH1(Zp)⇥ TH2(Zp) with TH1(Zp)⇥ TH1(Zp).
In particular, the characters  of TH3(Zp) are identified with pairs of characters
( 1, 2) of T = TH1(Zp).
Let:

•  = (� ) be an O0-character of T as in Section 2.9.1 and let  0 be the O0-
character of TH3(Zp) identified with the pair (, _);

•  be a finite-order Q⇥

p -valued character of T (Zp);

• K p
i ⇢ Gi(Ap

f ), i = 1, 2, be open compact subgroups such that ⌫(K1) = ⌫(K2);

• R be a p-adic O0[ ]-algebra.

For any finite-orderQ⇥

p -valued character � of X p, let  �1
� =  �1 ·� �det, where

by det we mean the map det : H1(Zp) ! (O⌦Zp)
⇥ =

Q
w|p O

⇥
w that is the

composition of the isomorphism (36) with the products of the determinants of
each of the GL-factors, and let  0

� be the character of TH3(Zp) identified with
the pair ( , �1

� ). By an admissible R-measure on X p of weight  , character  ,
and level K p

3 = (K p
1 ⇥ K p

2 ) \ G3(Ap
f ), we mean a measure µ(·) = µ(, , ·)

2 Meas(X p; V ord
 0 (K p

3 , R)) such that for any finite-order Q⇥

p -valued character �
of X p,

µ(�) = µ(, ,�) 2 V ord
 0 (Kp

3 , 
0
� , R[� ]).

Let R0 be any p-adic R-algebra and ` an R-linear functional ` : V ord
 0 (K p

3 ,
R) ! R0. Then

µ`(·) = µ`(, , ·) := ` � µ(, , ·)

is an R0-valued measure on X p.
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We will need a slight generalization of the above definition. Let ⇢,  , K p
i , R,

 �1
� , and  0

� be as above. Let:

• ⇢ = (⇢� ) be an O0-character of T = TH1 as in Section 2.9.1 and let ⇢4 be the
O0-character of TH3(Zp) identified with the pair (⇢, ⇢_);

•  be a finite-order Q⇥

p -valued character of T (Zp);

• K p
i ⇢ Gi(Ap

f ), i = 1, 2, be open compact subgroups such that ⌫(K1) = ⌫(K2);

• R be a p-adic O0[ ]-algebra.

Note that ⇢4 and (⇢, ⇢[) coincide as characters of TH3(Zp), where ⇢[ is defined
by analogy with (121). For any finite-order Q⇥

p -valued character � of X p, let
 �1

� =  �1·��det, where by det wemean the map det : H1(Zp) ! (O⌦Zp)
⇥ =Q

w|p O
⇥
w that is the composition of the isomorphism (36) with the products of the

determinants of each of the GL-factors, and let  4
� be the character of TH3(Zp)

identified with the pair ( , �1
� ). Let (↵,�) be a character of TH3(Zp), written

as a pair of characters of TH1(Zp) ⌘ TH2(Zp). By an admissible R-measure on
X p of weight ⇢, character  , shift (↵,�), and level K p

3 , we mean a measure
µ(·) = µ(⇢, , ·) 2 Meas(X p; V ord

⇢4·(↵,�)(K
p
3 , R)) such that for any finite-order

Q⇥

p -valued character � of X p,
Z

X p

� dµ := µ(�) = µ(⇢, ,�) 2 V ord
⇢4·(↵,�)(K

p
3 , 

0
� , R[� ]). (109)

5.2.2. Admissible measures on X p ⇥ TH: two variables. In this section we fix
H = H1 and consider admissible measures of weight ⇢ and shift (↵,�) where ⇢
and (↵,�) are allowed to vary. This requires a slight adjustment to the notation
of the previous section. More precisely, suppose we are given a homomorphism
sh : TH3(Zp) ! X p as before. By duality this gives a map sh⇤ : C(X p,
R) ! C(TH (Zp), R) for any ring R; sh⇤ takes characters to characters.
We also suppose we are given an algebraic automorphism � : TH ! TH . If

⇢ is a function on TH , we let ⇢�(t) = ⇢(�(t)).
We fix a tame level N0 as in Section 5.2 and define X p = X p,N0 as before. By

an admissible R-measure on X p ⇥ TH of character  , shift sh, twist �, and level
Kp = K p

3 = (K p
1 ⇥ K p

2 ) \ G3(Ap
f ), we mean a measure

µ(·) = µ( , sh, ·) 2 Meas(X p,Meas(TH , V ord(Kp, R)))

such that for any finite-order Q⇥

p -valued character � of X p and any character ⇢
of TH ,

µ(�)(⇢�) = µ( , sh,�)(⇢�) 2 V ord
⇢4·sh⇤(�)(K

p, 4
� , R[� ]).
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5.3. Eisenstein measures on X p ⇥ T . Now, we recall the Eisenstein
measures on X p ⇥ T . We briefly summarize their basic properties, as developed
in [Eis15, Eis14, EFMV18]—with special attention to the fact that they
p-adically interpolate values of the Eisenstein series associated to the local
data chosen above for the zeta integral calculations. As in Section 2.3, let
⌃ = {� 2 ⌃K : p� 2 ⌃p}. This is a CM type for K. Throughout this section,
we take � : K⇥\A⇥

K
! C⇥ to be a unitary Hecke character.

5.3.1. Axiomatics of the Eisenstein measure. The Eisenstein measures
of [Eis15, Eis14, Eis16], as well as the local components of ordinary vectors in
Hida families, have been reverse-engineered in order to meet the requirements
of the construction of the p-adic L-functions. In this section we first present
the axioms the Eisenstein measure is required to satisfy, and then explain how
they are satisfied by the ones constructed in the references just cited. We write
TH = TH1 in this section.
The Eisenstein measure is, in the first place, a p-adic measure on the space

X p ⇥ TH (Zp) with values in the space of p-adic modular forms on G4. It is
characterized by its specializations at classical points. Let YH be the formal
scheme over Zp whose points with values in a complete Zp-algebra R are given
by Hom(X p ⇥ TH (Zp), R⇥). Let Y alg

H ⇢ YH (Cp) be the set of pairs (� , c), where
� : X p ! R⇥, for some R ⇢ Cp, is the p-adic character associated to an
algebraic Hecke character, denoted � class, and c =  ⇢� is a locally algebraic
character of TH (Zp): ⇢ is an algebraic character, � is an involution of TH , as in
(97) and  is a character of finite order. In other words, c 2 Cr (TH (Zp), R) for
some r > 0, in the notation of Lemma 7.4.2.
Note that we are not requiring � class to be unitary here; rather, the variable

‘s’ is included in the infinity type of � ; we fix an integer µ such that, for each
� 2 ⌃ we have �� = k•kµ

� �0,� , where �0,� = (z�a(�� )
� z̄�b(�� )

� ). This factorization
is not unique; however, recall the set C3(µ,�� ) of (93). We assume we are given
a subset Y class

H ⇢ Y alg
H , determined by the following positivity condition:

(� , c) 2 Y class
H , � 2 C3(µ, z�a(�� )

� z̄�b(�� )
� ) 8� 2 ⌃. (110)

This condition is independent of the choice of m as above, in other words is
independent of the choice of factorization.
Now we return to the notation of Section 4.6: write � = k • km · �u and define

the finite-order idèle class character �+ of K+. We omit the expression of µ
and �0 in terms of m and �u , and vice versa. Define the normalizing factors
DS(�) and D(�) as in (108). LetUp, =

Q
w2⌃p

Qn
j=1Uw, j, , with notation as in

(23); here and below, the index i of (23) is superfluous because G is the unitary
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similitude group of a single hermitian space. Let

e = lim
�!
N

U N !
p, (111)

(as an operator). We call this the ordinary projector.

DEFINITION 5.3.2. Let K p
i be an open compact subgroup of Gi(Ap

f ), i = 3, 4,
with K p

3 ⇢ K p
4 \ G3(Ap

f ). Let S be the set of primes at which K p
4 and K p

3 do
not contain a hyperspecial maximal compact subgroup. An axiomatic Eisenstein
measure on X p ⇥ TH (Zp) of level S, relative to the set Y class

H , of level K p
4 and

with coefficients in R, is a measure dEis with values in V (K p
3 , R) such that, for

every pair (� = k•km ·�u, c =  ⇢�) 2 Y class
H , there is a factorizable Siegel–Weil

section

f (� , c) =
0O

v

fv(�v, c) 2
O

v

0 Iv(�u,v,m)

and such that:

• If v is a finite place outside S—so in particular �v is unramified for all
� 2 Y class

H —then fv(�v, c) is the unramified vector in Iv(�u,v,m) with fv(�v,
c)(1) = 1.

• If v 2 S then fv(�v, c) is independent of the pair (� , c).

• For any prime w dividing p and for any real prime � 2 ⌃w, the local section
f� (�� , c) depends only on � class

� and w (and on the choice of signature), and
is of the form

f� (�� , c, g) = B(�� , � )D(� ,m,�u,� )Jm,�u,� (g), g 2 G4,�

where Jm,�0,� 2 C1(G4) is the canonical automorphy factor introduced in
Section 4.4.2 and B(�� , � ) 2 Q̄⇥. In particular, f� (�� , c, g) does not depend
on the factorization of �� . (This follows from Remark 4.4.3.)

• For any prime w dividing p, the local section fw(�w, c) depends only on �w

and  w (and on the choice of signature).

•

e �
Z

X p⇥TH (Zp)

(� , c) dEis = DS(�) · e � res3 Ef (� ,c)

for all (� , c) 2 Y class
H , where DS(�) is the normalizing factor defined in (108),

res3 is as in (45), and e is the ordinary projector of (111).
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The measure dEis is said to be normalized at S if instead of the last relation
one has

R
X p⇥TH (Zp)

(� , c) dEis = D(�) · res3 Ef (� ,c) for all (� , c) 2 Y class
H . The

measure is said to have shift (↵,�) if it satisfies (109).

One obtains a measure normalized at S from an unnormalized measure by
multiplying by the appropriate product of local Euler factors at S. We write
D?(�) for ? = S or empty if we have not specified whether or not dEis is taken
to be normalized.
Definition 5.3.2 makes no mention of whether or not the measure dEis

contains a shift. The Eisenstein measure whose construction is recalled in
Section 8.2 comes with a shift that will be specified in Corollary 8.2.4.
In previous sections, we have chosen f (� , c) meeting the conditions of

Definition 5.3.2 in Sections 4.2.1 (local choices for v /2 S), 4.2.2 (local choices
for v 2 S), 4.5 (local choices for archimedean places), and 4.3 (local choices for
v | p). Note that the choices at p and 1 depend on the signature of the unitary
group G1. The existence of the Eisenstein measure itself that corresponds to
these choices is proved in [Eis15, Eis12]; see Theorem 8.2.2 below.
In the applications, the integrals of elements of Y class

H against dEis suffice to
determine dEis completely. We write

f holo(� , c) =
O

�2⌃F

Jm,�u,� ⌦ ⌦v-1 fv(�v, c);

Eholo
�u ,c(m) = Ef holo(�u ,c)(m). (112)

Then the last condition of Definition 5.3.2 can be rewritten

e �
Z

X p⇥TH (Zp)

(� , c) dEis = D?(�) · e � res3 D(,m,�u)Eholo
�u ,c(m),

8(� = k • km · �u, c) 2 Y class
H ,

(113)

where D(,m,�u) is as defined in Corollary 4.4.9.

6. Serre duality, complex conjugation, and anti-holomorphic forms

6.1. The Shimura variety Sh(V ). Let P = (K, c,O, L , h·, ·i, h) be a
PEL datum of unitary type associated with a hermitian pair (V, h·, ·iV ) as in
Sections 2.1, 2.2, and 2.3, together with all the associated objects, choices, and
conventions from Section 2. However, since the number of factors m equals 1,
the indexing subscript ‘i’ will disappear from our notation. Let G = GP be the
group scheme over Z associated with P and let X = XP be the G(R) conjugacy
class of h. Let ZG be the center of G. In this section we take ⇤ = ;, so the
moduli problems are all considered over the reflex field F .
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Given K ⇢ G(A f ) = GU(V )(A f ) (notation as in Section 1.4), we now write
KSh(V ) for the Shimura variety associated with the Shimura datum (G, X). (If
a�b� = 0 for all � 2 ⌃K, then, properly speaking, the datum (G, X) does not
satisfy the axioms of a Shimura variety as set out in [Del79]. Nevertheless, in
this case, as the datum arises from a PEL datum P , the notion of the associated
‘Shimura variety’ still makes sense, following the conventions in [Lan12].) So
KSh(V ) is just the F-scheme MK ,L . We set

Sh(V ) = lim
 �
K

KSh(V ) = lim
 �
K

MK ,L .

The dimension of each KSh(V ) is just the C-dimension of X , which is

d =
X

�2⌃K

a�b� .

At times we will be comparing constructions for both Sh(V ) and the Shimura
variety Sh(�V ) for the pair (V,�h·, ·iV ) (and the PEL datum Pc = (K, c,O,
L ,�h·, ·i, hc), where hc(z) = h(z̄)). When it is important to distinguish which
hermitian space an object is associated with, we will generally add a subscript
‘V ’ (for the pair (V, h·, ·iV )) or ‘�V ’ (for the pair (V,�h·, ·iV ), if the notation
does not already distinguish the space (such as is done by Sh(V ) and Sh(�V )).
We will also be using the notation G1 = GU(V ), G2 = GU(�V ) as in 3.1.

6.1.1. Automorphic vector bundles. Recall that automorphic vector bundles on
Sh(V ) = Sh(G, X) are defined by a ⌦-functor

G � Bun(X̂) �! Bun(Sh(V )),

where X̂ is the compact dual of X , so a flag variety for G, and G � Bun is the
⌦-category of G-equivariant vector bundles. The base point h 2 X determines
a point Ph 2 X̂ ; this is just the stabilizer of the Hodge filtration on L ⌦ R
determined by h. There is then a fiber functor G � Bun(X̂) ! RepC(Ph) ⇠=
RepC(P0), where the last equivalence comes from the fixed identifications
in 2.6.1. Given an irreducible representation W of P0 that factors through the
Levi quotient H0 of P0, we let !W be the corresponding automorphic vector
bundle. Each such bundle has a canonical model over a number field F(W )/F
contained in K0. For W = W as in 2.6.3 (here and in the following we write
W for W(C)), the vector bundle ! defined in 2.6.4 is the base change to
K0 of the canonical model of !W

. In fact, the ! , which are defined over
the toroidal compactifications, are the canonical extensions of the automorphic
vector bundles, and their twists by the ideal sheaves of the boundaries are the
subcanonical bundles.
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6.1.2. Coherent cohomology and (Ph, Kh)-cohomology. We will write
Hi(Sh(V ),!) instead of Hi(Sh(V )tor,!), which is imperfect shorthand
for

lim
�!
K ,⌃

Hi(KSh(V )⌃ ,!)

where the limit is taken over toroidal compactifications (indexed by ⌃) at finite
level (indexed by K ). For i = 0, this is superfluous, by Köcher’s principle, except
possibly when n = 2 and F = Q, and the reader can be trusted to supply the
missing indices in this case. Likewise we write Hi(Sh(V ),!sub

 ) for

lim
�!
K ,⌃

Hi(KSh(V )⌃ ,!(�D⌃))

where D⌃ = KSh(V )⌃ � KSh(V ). We let

Hi
! (Sh(V ),!) = im{Hi(Sh(V ),!sub

 ) ! Hi(Sh(V ),!)}.

Note that the ground field here can be taken to be any extension ofK0. Moreover,
these definitions make sense over the ring OK0,(p0), provided we restrict to those
K of the form K = G(Zp)Kp or K = Ir Kp.
Over C the coherent cohomology can be computed in terms of Lie algebra

cohomology. Let g = Lie(G(R))C, and let g = p�
h � kh � p+h be the Harish–

Chandra decomposition associated with h (the eigenvalue decomposition for the
involution ad h(

p
�1)). Let Ph = p�

h � kh; this is just Lie(Ph(R))C (so the Lie
algebra of Ph(C)). We put

Kh = U1 = C(R).

Let A0(G) be the space of cusp forms on G(A). Then over C there is a natural
identification of G(A f )-modules:

Hi
! (Sh(V ),!) = Hi(Ph, Kh;A0(G) ⌦ W), for i = 0 or d. (114)

Here we use the identifications of Ph(C) with P0(C) and C(C) with H0(C) to
realize W as a (Ph, Kh)-module. For i = 0 this just restates the identification,
recalled in 2.7.2, of S(K ,C) with the space of U1 ⇥ K -invariant smooth
functions f : G(A) ! W that are annihilated by p�

h .

6.1.3. The ? involution. There is an anti-holomorphic involution ? of G �

Bun(X̂) that takes a G-equivariant bundle to the complex conjugate bundle; on
representations of P0 factoring through the Levi quotient H0 (which has been
identified over C with the stabilizer C in G/R of h) it takes the irreducible
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representation W to a representation W? whose restriction to the maximal
compact subgroup of U1 = C(R) ⇢ H0(C) is dual to the restriction of W

but whose restriction to R⇥ ⇢ G(R) coincides with that of  . Concretely, if 
is identified with the tuple  = (0, (� )), � = (�,1, . . . , �,b�

), then ? is the
weight

? = (?
0 , (

?
� )), ?

0 = �0 + a(), ?
� = (��,b�

, . . . ,��,1) (115)

and
W? ⇠= W_

 ⌦ ⌫a(),

where

a() = 20 +
X

�2⌃K

b�X

j=1

�, j . (116)

There is a unique, up to scalar multiple, c-semilinear, Kh-equivariant
isomorphism W

⇠
�! W? . Such an isomorphism is given explicitly by the

map that sends � 2 W to �? 2 W? , where if h 2 H0(C) is identified with
(h0, (h� )) 2 C⇥ ⇥

Q
�2⌃K

GLb�
(C) via (15), then

�?(h) = ha()
0 · �((h̄�1

0 , (w�
th̄�1

� )).

Here w� 2 GLb�
(C) is the longest element of the Weyl group of the standard

pair and the overline ¯denotes complex conjugation. The Kh-invariance follows
easily from (17).
The identification of G(C) with G0(C) in 2.6.1 identifies Lie(P0(C)) withPh

and Lie(H0(C)) with kh . It then follows that the map � 7! �? is Ph-equivariant,
up to c-semilinearity.
The action of h = (h0, (h� )) 2 H0(C) on HomC(^dp±h ,C) is just

multiplication by h⌥d
0

Q
�2⌃K

det(h� )
±2a� ; this is just the character

±
h = (⌥d, (±

h,� )), ±
h,� = (±2a� , . . . ,±2a� ).

Then the H0(C)-representation

HomC(^
dp+h ,W?) = HomC(^

dp+h ,C) ⌦C W?

is naturally identified with WD (the identification depends on a choice of basis
of the one-dimensional space ^dp�

h ), where

D = ? + +
h .

The Killing form on g defines an H0(C)-equivariant contraction map

^dp�
h ⌦C ^dp+h ! C,
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and so defines an H0(C)-equivariant inclusion

i? : W? ,! HomC(^
dp�

h ⌦C ^dp+h ,W?) = HomC(^
dp�

h ,WD ).

6.2. Complex conjugation and automorphic forms. In this section we
describe three actions of complex conjugation on spaces of modular forms. Each
has an interpretation in Deligne’s formalism for motives of absolute Hodge
cycles, though we do not emphasize this here. We describe these actions in terms
of (Ph, Kh)-cohomology as well in terms of coherent cohomology.

6.2.1. Complex conjugation on automorphic forms. Let ⇡ be a (g, Kh) ⇥
G(A f )-representation occurring in the spaceA0(G) of cusp forms on G(A). We
define ⇡̄ to be the complex conjugate representation; that is, ⇡̄ consists of the
functions '̄(g) = '(g) for ' 2 ⇡ . The map ⇡ ! ⇡̄ , ' 7! '̄, is c-semilinear and
Kh ⇥ G(A f )-equivariant, and even g-equivariant up to c-semilinearity. We then
obtain a c-semilinear G(A f )-equivariant map

(⇡ ⌦CW)
Kh

'⌦� 7!'̄⌦�?

�! (⇡̄ ⌦CW?)Kh
id⌦i?

�! HomC(^
dp+h ,⌦⇡̄ ⌦CWD )Kh (117)

that is also Ph-equivariant, up to c-semilinearity. This induces a c-semilinear
G(A f )-equivariant isomorphism

cB : H 0(Ph, Kh;⇡ ⌦C W) ! Hd(Ph, Kh; ⇡̄ ⌦C WD ). (118)

Taking ⇡ to be the space of cusp formsA0(G) of G(A) (so, in particular, ⇡̄ = ⇡),
we obtain a c-semilinear G(A f )-equivariant isomorphism

cB : H 0
! (Sh(V ),!)

⇠
�! Hd

! (Sh(V ),!D ). (119)

6.2.2. Complex conjugation on Sh(V ). Recall that

Pc = (K, c,O, L ,�h·, ·i, hc), hc(z) = h(z̄),

is just the PEL datum of unitary type associated with the hermitian pair (V,
�h·, ·iV ). The corresponding reflex field is F�V = cFV = cF , the complex
conjugate of F . There is a canonical identification GPc = GP = G. The
respective stabilizers in G(R) of h and hc (action by conjugation) are the same:
they both equalU1 (that is, Kh = U1 = Khc ). Let X = G(R)/U1. We then have
identifications X ⇠

�! Xh = XP , g 7! ghg�1, and X ⇠
�! Xhc = XPc , g 7!

ghcg�1. Each of Xh and Xhc have a complex structure, and the pullbacks of these
complex structures to X are complex conjugates. In particular, the composition
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Xh
⇠

�! X ⇠
�! Xhc is an anti-holomorphic map. So a holomorphic function

on Xhc defines an anti-holomorphic function on Xh , and vice versa. This explains
the map F1 in (124) below.
The automorphic sheaves on Sh(�V ) are associated to representations of the

group H0,�V , which is canonically identified with H0,V = H0 by switching the
roles of ⇤0 and ⇤_

0 ). The analogue of (15) for H0,�V is the isomorphism

H0,�V /S0
⇠

�! Gm ⇥
Y

�2⌃K

GLO⌦O,�
(⇤0,� ) ⇠= Gm ⇥

Y

�2⌃K

GLa�
(S0). (120)

The identification H0,V = H0,�V is given in terms of (15) and (120) by (h0,
(h� )) 7! (h0, (h0

th�1
�c )). We have associated to each dominant character  of

the diagonal torus TH0,�V of H0,�V a representation W,�V of H0,�V and hence a
vector bundle !,�V on Sh(�V ). Given a dominant character  = (0, (� )) of
TH0,V , we define a dominant character [ = (0, (�c)) of TH0,�V . With respect to
the canonical identification H0,�V = H0,V described above, there is an explicit
identification of H0-representations

W[,�V
⇠

�! W?,V , � 7! ((h, (h� )) 7! �(h0, (w�h0
th�1

�c ))). (121)

The Harish–Chandra decompositions g = p�
h � kh � p+h = p�

hc � khc � p+hc
satisfy p±h = p⌥

hc and kh = khc . Let ⇡ be a (g, Kh) ⇥ G(A f )-representation
occurring in the automorphic forms on G(A). Then the natural map

(⇡p�
hc ⌦C W[,�V )

Khc = (⇡p+h ⌦C W?,V )
Kh

id⌦i⇤
! HomC(^

dp�
h ,⇡ ⌦ WD ,V )

Kh

(122)
induces a C-linear G(A f )-equivariant isomorphism

F1 : H 0(Phc , Khc;⇡ ⌦C W[,�V ) ! Hd(Ph, Kh;⇡ ⌦C WD ,V ). (123)

Taking ⇡ to beA0(G)we then obtain aC-linearG(A f )-equivariant isomorphism

F1 : H 0
! (Sh(�V ),![,�V )

⇠
�! Hd

! (Sh(V ),!D ,V ). (124)

Note that no complex conjugation is involved in this isomorphism: F1 identifies
a cohomology class on G2 represented by a holomorphic modular form with
a cohomology class on G1 represented by an anti-holomorphic modular form,
simply because the groups G1 and G2 are canonically equal but the hermitian
symmetric domains have opposite complex structure.

6.2.3. The involution ‘†’ and the isomorphisms KSh(V ) ⇠= K †Sh(�V ). Recall
that we have assumed that h is standard (see 2.3.2). This means that there is
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a K-basis of V with respect to which the hermitian pairing h·, ·iV is given by
a diagonal matrix D = diag(d1, . . . , dn), d1, . . . , dn 2 K+, and such that the
image of h is diagonal with respect to the induced basis on each of the spaces
V� = V ⌦K,� C. Under the hypothesis that each prime above p in K+ splits
in K, it is always possible to choose such a K-basis and the lattice L so that
D is a diagonalization of the perfect hermitian pairing on L ⌦ Z(p) induced by
h·, ·iV ; we fix such a choice of K-basis and a lattice L . Let I : V ! V be the
K+-involution of V that is just the action of c on the coordinates with respect to
this fixed K-basis. Note that L ⌦ Z(p) is I -stable, and the map induced by I on
L ⌦ Zp interchanges L+ and L�.
With respect to the fixed K-basis, G/Q is identified with a subgroup of

ResK/QGLn(K), and the action of c on K induces an automorphism g 7! ḡ
of G/Q (note that gc = IgI ). This automorphism takes h to hc and so maps
U1 to itself. In particular, it induces an automorphism of X . The composition
Xh

⇠
�! X

g 7!ḡ
�! X ⇠

�! Xhc (which is just ghg�1 7! ḡhcḡ�1) is holomorphic.
In particular, the induced map Sh(V )(C) ! Sh(�V )(C) is holomorphic and so
a morphism of Shimura varieties over C.
We modify this map at p, to more easily compare level structures. Recall

that for each prime w|p we fixed decompositions Lw = L+
w � L�

w (see 2.2).
We also fixed an Ow-basis of each L±

w , which gives an Ow-basis of each Lw.
We define level structures at p for Pc by taking Lc,±

w = L±
w . Then I 0w,�V =

tI 0w,V = t(I 0w,V )
�1 with respect to this Ow-basis of Lw. This chosen Ow-basis of

Lw may not be the Kw-basis of V ⌦K Kw induced by the fixed K-basis of V ; let
�w 2 GLKw

(V ⌦K Kw) ⇠= GLn(Kw) be an element taking the latter to former.
Let �p = (1, (Dt��1

w ��1
w )w2⌃p) 2 Q⇥

p ⇥
Q

w2⌃p
GLn(Kw) ⇠= G(Qp), where the

isomorphism is determined by the fixed K-basis of V . Then

�̄p = ��1
p , ��1

p G(Zp)�p = G(Zp), and ��1
p Ī 0r,V �p = I 0r,�V . (125)

We then define an automorphism g 7! g† of G(A) ! G(A) by g† =
⌫(g)�1��1

p ḡ�p. Given K ⇢ G(A f ) we let K † be the image of K under †. As
a consequence of (125), if K = G(Zp)Kp, then K † = G(Zp)K̄ p and

(Kr,V )
† = K †

r,�V . (126)

Consequently, the map Sh(V )(C) ! Sh(�V )(C) induced by g 7! ḡ�p identifies
Kr,V Sh(V ) with K †

r,�V
Sh(�V ). The following Proposition is then obvious.

PROPOSITION 6.2.4. The isomorphism Kr,V Sh(V )
⇠

�! K †
r,�V

Sh(�V ) is defined
over OK0,(p0). On moduli problems it is given by the map that sends a tuple
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(A, �, ◆,↵,�) classified by MP,Kr ,L(R) to the tuple (A, �, ◆ � c,↵ � I,� � I )
classified by MPc,K †

r ,L(R) for any OK0,(p0)-algebra R.

The automorphism g 7! g† takes p±h to p±hc and Ph to Phc . The action of g 7! g†

on Kh is identified via (17) as (h0, (h� )) 7! (h�1
0 , (th�1

� )). Let

† = [ · k⌫k�a(),

so
W†,�V

⇠= W_,V
⇠= W_

,V .

The map

W,V
� 7!�†

�! W†,�V = W[,�V⌦k⌫k�a(), �†((h0, (h� )))= �((h0, (h�c)))h
�a()
0 ,

satisfies (k† · �)† = k · �† for all k 2 Khc = Kh . It follows that under the
isomorphism Sh(V )

⇠
�! Sh(�V ) defined by g 7! g†, !†,�V pulls back to

!,V , and so there are C-linear isomorphisms

F† : Hi
! (Sh(V ),!,V )

⇠
�! Hi

! (Sh(�V ),!†,�V ) (127)

that areG(A f )-equivariant up to the action of the automorphism ‘†.’ In particular,
these induce isomorphisms

F† : Hi
! (KrSh(V ),!,V )

⇠
�! Hi

! (K †
r
Sh(�V ),!†,�V ), (128)

even overOK0,(p0)-algebras R ⇢ C. In particular, F† restricts to an isomorphism

F† : S,V (Kr,V , ; R) ⇠
�! S†,�V (K †

r,�V , 
†; R) (129)

for R ⇢ C any OK0,(p0)[ ]-algebra, where  † =  �1 if both are viewed as
characters of the diagonal torus of the right side of (9) via the isomorphisms
(10).
The action of F† is described in terms of automorphic forms as follows. Let

⇡ be a (g, Kh) ⇥ G(A f ) representation occurring in the space of automorphic
forms on G(A). We define ⇡ † to be the space of functions '†(g) = '(g†) for
' 2 ⇡ . The map ⇡ ! ⇡ †, ' 7! '†, is C-linear and is both g- and Kh-equivariant
up to the action of the automorphism ‘†’. The map

(⇡ ⌦C W,V )
Kh

'⌦� 7!'†⌦�†

�! (⇡ † ⌦C W†,�V )
Khc

is then a C-linear isomorphism that intertwines the actions of g and g† for all
g 2 G(A f ). This induces a corresponding isomorphism

F† : Hi(Ph, Kh;⇡ ⌦C W,V )
⇠

�! Hi(Phc , Khc;⇡
† ⌦C W†,�V ). (130)

Taking ⇡ = A0(G) (and so ⇡ † = ⇡ ), we get F† from before.
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6.3. Serre duality and pairing of automorphic forms. Since

WD = HomC(^
dp+h ,W?) ⇠= HomC(^

dp+h ,C) ⌦C W_
 ⌦ ⌫a(),

the natural contraction W ⌦C W_
 ! C gives a homomorphism of H0(C)-

representations

W ⌦C WD ! HomC(^
dp+h ,C) ⌦ ⌫a().

This induces a natural map

! ⌦ !D ! ⌦d
Sh(V ) ⌦ L(),

where L() is the automorphic line bundle attached to the character ⌫a(). Since
the character is trivial on Gder, L() is topologically the OSh(V )-bundle attached
to the constant (trivial) sheaf, but the action of G(A f ) on L() is nontrivial.
Fixing a level subgroup K and a toroidal compactification KSh(V ) ,! KSh(V )⌃ ,
we can extend this to a natural pairing

! ⌦ !sub
D ! ⌦d

K Sh(V )⌃
⌦ L()

and the analogous pairing on !can
 ⌦ !D . As in [Har90, Corollary 2.3], Serre

duality therefore defines a perfect pairing

H 0
! (Sh(V ),!) ⌦ Hd

! (Sh(V ),!D ) ! lim
�!
K ,⌃

Hd(KSh(V )⌃ ,⌦
d
Sh(V )⌃

⌦ L()).

(131)
The function g 7! k⌫(g)k�a() defines a global section of L()_ and therefore
an isomorphism

lim
�!
K ,⌃

Hd(KSh(V )⌃ ,⌦
d
Sh(V )⌃

⌦ L()) ⇠
! lim

�!
K ,⌃

Hd(KSh(V )⌃ ,⌦
d
Sh(V )⌃

).

The right-hand side is isomorphic under the trace map to the space of
functions C(⇡0(V )) on the compact space ⇡0(V ) of similitude components
of Sh(V ). Composing with the projection of C(⇡0(V )) onto the invariant
line C(⇡0(V ))G(A)—in other words, integration over ⇡0(V ) with respect to an
invariant measure with rational total mass—we thus obtain a canonical perfect
pairing:

h·, ·iSer : H 0
! (Sh(V ),!) ⌦ Hd

! (Sh(V ),!D ) ! C. (132)

REMARK 6.3.1. In what follows, we will be using the Tamagawa number to
normalize the Serre duality pairings. This is likely to introduce a factor of a
power of 2 in a comparison of our results with those predicted by motivic
conjectures.
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The pairing h·, ·iSer can be described in terms of automorphic forms as follows.
Let p = p+h � p�

h . Then h·, ·iSer is just the pairing

H 0(Ph, Kh;A0(G) ⌦ W) ⌦ Hd(Ph, Kh;A0(G) ⌦ WD ) ! C

defined by multiplication of cusp forms, contraction of the coefficients, and
integration. More precisely, let dg denote Tamagawa measure, and factor dg =
dg1 · dg f , where dg1 (respectively dg f ) is an invariant measure on G(R)
(respectively on G(A f )). We assume the measure dg f takes rational values on
open subgroups of G(A f ), and we write dg1 = dk1 ⇥ dx ⇥ dt/t , where dkh
is the measure that gives Kh measure 1, dt is Lebesgue measure on the center
ZG(R)

⇠
�! R⇥—which disappears in the integral—and dx is a differential form

on ph; this will inevitably be rational over the reflex field of h. We denote the
contraction

W ⌦C HomC(^
dp�

h ,HomC(^
dp+h ,W

_
 ⌦ ⌫a())) ! HomC(^

2dp,C(⌫a())),

by
� ⌦ �0 7! [�,�0].

Then for

' 2 (A0(G)p
�
h ⌦C W)

Kh and '0 2 HomC(^
dp�

h ,A0(G) ⌦C WD )Kh ,

we normalize h·, ·iSer so that

h','0iSer =
Z

G(Q)ZG (R)\G(A)
['(g),'0(g)] · k⌫(g)k�a() dg f . (133)

It we use the basis dx of (^2dp)_ to identify (^2dp)_ with C, then we write
['(g),'0(g)]x for the element of C(⌫a()) corresponding to ['(g),'0(g)], and
(133) can be rewritten

h','0iSer =
Z

G(Q)ZG (R)\G(A)
['(g),'0(g)]dx · k⌫(g)k�a() dg.

In what follows we fix the basis dx and omit the subscript x from [•, •].
From h·, ·iSer we obtain the hermitian Petersson pairing:

h·, ·iPet : H 0
! (Sh(V ),!) ⇥ H 0

! (Sh(V ),!) ! C, h·, ·iPet = h·, cB(·)iSer .
(134)
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6.4. A normalized pairing, trace maps, and integral structures. While the
pairing h·, ·iSer is canonical it is not compatible with traces of automorphic forms
with respect to levels (this is manifestly a failure of the right-hand side of (133)).
We correct this by introducing a normalization of the pairing h·, ·iSer that depends
on the level. We then use this normalized pairing to define integral structures on
top degree cohomology. One consequence of these definitions is that the integral
structures are compatible with respect to the trace maps.

6.4.1. A normalized Serre duality. For an open compact subgroup Kp ⇢
G(Ap

f ) we define

h·, ·i,Kr
: H 0

! (KrSh(V ),!) ⌦ Hd
! (KrSh(V ),!D ) ! C (135)

as
h·, ·i,Kr

=
1

Vol(I 0r,V )
h·, ·iSer , (136)

where Ir = Ir,V and the volume Vol(I 0r ) of K 0
r is taken with respect to the

Tamagawa measure dg also appearing in (133). In particular, if ' and '0 in the
left-hand side of (133) are both invariant by Kr , then

h','0i,K =
1

Vol(I 0r )

Z

G(Q)ZG (R)\G(A)
['(g),'0(g)] · k⌫(g)k�a() dg. (137)

From (137) it is easily seen that if r 0 > r and if ' is invariant by Kr and '0 by
K 0

r , then

h','0i,Kr 0
= h', traceKr /Kr 0

('0)i,Kr , traceKr /Kr 0
('0)=

#(I 0r /Ir )
#(I 0r 0/Ir 0)

X

�2Kr /Kr 0

� ·'0.

(138)
The analogous relation also holds for ' invariant under Kr 0 and '0 invariant under
Kr . The key point here is, of course, that Ir/Ir 0

⇠
�! Kr/Kr 0 and

Vol(I 0r ) = Vol(I 0r 0) · #(I 0r /I
0
r 0) = Vol(I 0r 0) · #(Ir/Ir 0)

#(I 0r /Ir )
#(I 0r 0/Ir 0)

.

6.4.2. Integral structures on top cohomology. Let OK0,(p0) be as in
Section 2.6.3. Fix V and write ! = !,V . The spaces Hi

! (KrSh(V ),!)
have natural integral structures over OK0,(p0) with respect to OK0,(p0)-integral
structures on the underlying schemes, for any i . However, because the special
fibers become progressively more singular as r increases, we do not choose
integral structures on the schemes. For cohomology in degree i = 0, we define
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the OK0,(p0)-structure on H 0
! (KrSh(V ),!,V ) by S(Kr ,OK0,(p0)) as in Section 2,

specifically in Sections 2.5, 2.6.5, and especially 2.9. We then define the
OK0,(p0)-structure on Hd

! (KrSh(V ),!D ) to be dual to the integral structure on
H 0

! (KrSh(V ),!) with respect to the pairing h·, ·i,Kr
defined in (135). In other

words, for any OK0,(p0)-algebra R, we have an identification

Hd
! (KrSh(V ),!D , R) = HomO

K0,(p0)
(S(Kr ,OK0,(p0)), R) (139)

induced by h·, ·i,Kr
. It follows from (138) that these integral structures are

respected by the trace maps:

' 2 Hd
! (Kr+1Sh(V ),!D , R) H) traceKr /Kr+1' 2 Hd

! (KrSh(V ),!D , R).
(140)

6.5. (Anti-)holomorphic automorphic representations. By an automor-
phic representation of G we will always mean an irreducible (g, Kh) ⇥ G(A f )-
representation occurring in the space of automorphic forms on G(A). This
convention allows us to distinguish holomorphic representations from anti-
holomorphic representations. (Note that Kh , which is the stabilizer of h in G(R),
need not project to the maximal compact in G(R)/ZG(R).)

6.5.1. Holomorphic and anti-holomorphic cuspidal representations of type
(, K ). Let ⇡ be a cuspidal automorphic representation of G (always assumed
irreducible). Write ⇡ = ⇡1 ⌦ ⇡ f , where ⇡ f is an irreducible admissible
representation of G(A f ) and ⇡1 is an irreducible (g, Kh)-module. Let K ⇢
G(A f ) be an open compact. We say ⇡ is holomorphic (respectively anti-
holomorphic) of type (, K ) if H 0(Ph, Kh;⇡1 ⌦C W) 6= 0 (respectively
Hd(Ph, Kh;⇡1 ⌦C WD ) 6= 0) and if ⇡ K

f 6= 0. In this paper, we will only
be concerned with ⇡ that are either holomorphic or anti-holomorphic. If ⇡
is holomorphic (respectively anti-holomorphic) of type (, K ), then by our
conventions ⇡̄ is anti-holomorphic (respectively holomorphic) of type (, K ).
Note that, with G fixed, ⇡ can be either holomorphic or anti-holomorphic, but

not both (unless G is definite); however, the isomorphism F1 of (123) identifies
anti-holomorphic representations of G2 with holomorphic representations of G1,
and vice versa. Although Hida theory is generally understood to be a theory
of p-adic variation of (ordinary) holomorphic modular forms, the nature of the
doubling method makes it more natural for us to take our basic object ⇡ to be
an anti-holomorphic (and anti-ordinary, see 6.6.6 below) cuspidal automorphic
representation of G1. Thus, ⇡ is a holomorphic automorphic representation of
G2 but the natural object there is ⇡[, or ⇡̄ , which is again anti-holomorphic.
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Because this is inevitably a source of confusion, reminders of these conventions
have been inserted at strategic locations in the text.

REMARK 6.5.2. If ⇡ is holomorphic or anti-holomorphic, then, by the
considerations in [BHR94], ⇡ f is always defined over a number field, say
E(⇡). We will always take E(⇡) to contain K0.

6.5.3. The [ involution and the MVW involution †. Let ⇡ be a cuspidal
automorphic representation of G. Let ⇠⇡ be the central character ⇡ . If (⇡1 ⌦C
W)

Kh 6= 0 (for example, if ⇡ is holomorphic of type (, K )), then ⇠⇡,1(t)= ta()
for t 2 R⇥. Let

⇡[ = ⇡_ ⌦ |⇠⇡ � ⌫| = ⇡_ ⌦ k⌫ka(). (141)

Because ⇡ ⌦ |⇠⇡ � ⌫|�
1
2 is unitary,

⇡[ ⇠= ⇡̄ , (142)

and when ⇡ occurs with multiplicity one, as we will generally assume, ⇡[ and ⇡̄
are the same space of automorphic forms. In particular, the operation ⇡ 7! ⇡[

is an involution of the set of cuspidal automorphic representations of G. If ⇡ is
holomorphic, then ⇡[ is anti-holomorphic, and vice versa.
The involution g 7! g† of G that was fixed in 6.2.3 is of the type considered

by Moeglin, Vigneras, and Waldspurger in [MVW87, Ch. 4]. In particular, there
is an element h0 2 GLK+(V ) such that h0 is c-semilinear for the K-action on V
and hh0v, h0wiV = hw, viV and such that ḡ = h0gh�1

0 ; with respect to the fixed
K-basis of V , h0 is just ‘act-by-c on the coordinates’. Let ⇡ =

N
`61 ⇡` be an

automorphic representation of G. If the hermitian pair (V, h·, ·iV ) is unramified
at `, then it is a deep result proved in [MVW87, Ch. 4] (cf. [HKS96]) that

⇡ †
`

⇠= (⇡` � Ad(h0)) ⌦ (⇠�1
⇡ � ⌫) ⇠= ⇡_. (143)

In particular, if ⇡ satisfies strong multiplicity one—which we expect if the places
at which ⇡ or the group G is ramified all split in K/K+ and its base change to
GLn/K is cuspidal —then ⇡ † ⇠= ⇡_ and so ⇡ † ⌦ k⌫ka() = ⇡[ = ⇡̄ . In any event,
(143) permits the Hecke actions on ⇡[ to be expressed in terms of the Hecke
actions on ⇡ †, at least at the unramified primes `. As will be explained later, the
doubling method will pair ⇡ and (a twist) of ⇡[, but we will use the involution
‘†’ to compare level structures and Hecke algebras. This partly motivates our
putting

K [ = K †,  [ =  †, and [ = † · ⌫a(). (144)
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6.5.4. Relating h·, ·i⇡ to h·, ·iSer . Let ⇡ be a holomorphic cuspidal automorphic
representation of G of type (, K ). Recall that the canonical pairing h·, ·i⇡ :
⇡ ⌦ ⇡_ ! C can be expressed as

h','0i⇡ =
Z

G(Q)ZG (R)\G(A)
'(g)'0(g) dg, ' 2 ⇡,'0 2 ⇡_. (145)

The pairing h·, ·iSer can be expressed in terms of h·, ·i⇡ as follows.
Let w1, . . . , wm be a basis of W and let w_

i , . . . , w
_
m be the dual basis of W_

 .
As WD is the twist of W_

 by a character, the w_
i also define a basis of WD . Let

' 2 (⇡p�
h ⌦C W)

Kh and '0 2 Hom(^dp�
h ,⇡

[ ⌦C WD )Kh . Write ' =
P

i 'i ⌦wi

and '0 =
P

j '
0
j ⌦ w_

j . Then it follows from (133) that

h','0iSer =
X

i

h'i ,'
0
i · k⌫k�a()i⇡ . (146)

Let � be a Hecke character of type A0. Recall that we have defined a twisted
Petersson norm in (4.1.6), pairing vectors in ⇡ with vectors in ⇡[ ⌦ ��1 � det.
We may analogously define a pairing

h·, ·iSer,� : ⇡
O

⇡[ ⌦ ��1 � det

with the property that

h','0iSer,� =
X

i

h'i ,'
0
ik⌫k�a()i⇡,� . (147)

Here the subscript � at the end of (147) has the same meaning as in (4.1.6).

6.6. Hecke algebras. We continue to let G = G1 = GU(V ) and we return to
the notation of Section 2.9.4; thus, classical modular forms are of weight  . Fix
a positive integer r as in 2.5 and a level subgroup K = Kr = Kp · Ir ⇢ G(A f ).
Henceforth we will write T (g) = Tr (g) for the Hecke operators [Kp

r gK
p
r ] for

g 2 G(Ap
f ); we have also introduced U -operators Uw, j in (23).

For any S0-algebra R ⇢ C, we let TKr ,,R be the R-subalgebra of
EndC(S(Kr ;C)) = EndC(H 0(KrSh(V ),!)) generated by the Uw, j, =
| 0(tw, j)|�1

p Uw, j , where  0 is related to  as in (30), and by the T (g) = Tr (g)
for g 2 G(AS

f ), where S = S(Kp) is the set of places of K+ at which Kp does
not contain a hyperspecial maximal subgroup. (Since G is a Q-group, this needs
to be clarified. We let G(AS

f ) =
Q

p G(Qp)
S , where the product is taken over

rational primes. If p is not divisible by a prime in S then G(Qp)
S = G(Qp).
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In general, let P denote the set of primes of K+ dividing p, and write
P = P1

`
P2, where primes in P1 split in K and those in P2 do not split.

Then
G(Qp) =

Y

v2P1

GL(n,K+
v ) ⇥ GP2,

where GP2 is the subgroup of elements ((xw), t) 2
Q

w2P2
GL(n,Kw)⇥Q⇥

p such
that each xw preserves the hermitian form on V (Kw) with similitude factor t .
Write S \ Pi = Sp,i , i = 1, 2. Then

G(Qp)
S =

Y

v2P1\Sp,1

GL(K+
v ) ⇥ GP2

if Sp,2 is empty, and G(Qp)
S =

Q
v2P1\Sp,1 GL(K

+
v ) otherwise. We could also

ignore all the divisors of p if even one of them belongs to S, since dropping
finitely many generators from the unramified Hecke algebra does not change
anything.)
We similarly define T�

Kr ,,R and Td
Kr ,,R by replacing Uw, j, with

U�
w, j, = | 0(tw, j)|pU�

w, j and, in the second case, also replacing S(Kr ;C)
with Hd(KrSh(V ),!) = Hd(Sh(V ),!)

Kr . We will follow the convention of
adding a subscript ‘V ’ (respectively ‘�V ’) to notation if it is needed to indicate
that it relates to the hermitian pair (V, h·, ·iV ) (respectively (V,�h·, ·iV )).

LEMMA 6.6.1. Let R ⇢ C be a subring.

(i) There exists a unique R-algebra isomorphism TKr ,,R
⇠

�! Td
Kr ,D ,R, T 7!

T d, such that Ud
w, j, = U�

w, j,D and T (g)d = k⌫(g)ka() · T (g�1).

(ii) There exists a unique R-algebra isomorphism TKr ,,V,R
⇠

�! TK [
r ,[,�V,R,

T 7! T [, such that U [
w, j, = U�1

w,n,[Uw,n� j,[ and T (g)[ = T (g†) = T (ḡ).

(iii) There exists a unique isomorphism T�
Kr ,,R

⇠
�! Td

Kr ,D ,cR that maps r 2 R
to c(r), U�

w, j,D to U�
w, j,D , and T (g) to T (g).

Proof. Part (i) follows from Serre duality, part (ii) from the isomorphism F†, and
part (iii) from the isomorphism cB .

For a nebentypus  of level r (a character of TH (Zp) that factors through
TH (Zp/prZp)), we let TKr ,, ,R and Td

Kr ,, ,R be the quotients of TKr ,,R and
Td

Kr ,,R upon restriction to the (invariant) subspaces S(Kr , ,C) ⇢ S(Kr ,C)
and Hd(KrSh(V ),!)

 , the subspace of Hd(KrSh(V ),!) on which the action
of K 0

r (which factors through TH (Zp/prZp) as in Section 2.5) acts via  .
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LEMMA 6.6.2. The isomorphisms in Lemma 6.6.1(i)–(ii) induce R-algebra
isomorphisms

TKr ,, ,R
⇠

�! Td
Kr , �1,!

D ,R and TKr ,, ,V,R
⇠

�! TK [
r ,[, [,�V,R.

This is clear from the definitions.
The R-modules S(Kr ; R) and S(Kr , ; R) are stable under the action of the

Hecke operators Uw, j, and T (g), g 2 G(AS
f ). In particular, the cusp forms over

C can be replaced by those over R in the definition of TK ,,R and TK ,, ,R .
For any of these Hecke algebras T?

•, we write T?,p
• for the subalgebra generated

over the ring R by the T (g), g 2 G(AS
f ) (so omitting the Uw, j, and U�

w, j,). The
isomorphisms of Lemmas 6.6.1 and 6.6.2 restrict to corresponding isomorphisms
of these (p-depleted) Hecke algebras.
If R = S0, then we omit the subscript ‘R’ from our notation.

6.6.3. The homomorphism �p
⇡ , isotypical subspaces, and the multiplicity one

hypothesis. Let ⇡ be a holomorphic cuspidal representation of G of type (,
Kr ). Then the natural action of Tp

Kr ,
on ⇡ Kr is given by a character that we

denote �p
⇡ ; these homomorphisms are compatible under the natural projections

Tp
Kr ,

⇣ Tp
Kr 0 ,

, r > r 0, so we do not include the r in our notation. Via the
isomorphism TKr ,,V

⇠
�! TK [

r ,[,�V of Lemma 6.6.1(ii), �p
⇡,V = �p

⇡ determines
a homomorphism �

p,[
⇡,V of Tp

K [
r ,[,�V,R

, which, by (143), satisfies

�
p,[
⇡,V = �

p
⇡[,�V . (148)

For an S0-algebra R ⇢ C, the homomorphism �p
⇡ extends R-linearly to a

homomorphism of the Hecke algebras over R; we use the same notation for
this homomorphism.
We say that ⇡ satisfies the multiplicity one hypothesis for ⇡ if:

HYPOTHESIS 6.6.4 (Multiplicity one hypothesis). For any holomorphic
cuspidal ⇡ 0 6= ⇡ of type (, Kr ), �

p
⇡ 0 6= �p

⇡ .

This multiplicity one hypothesis for ⇡ is expected to hold if S = S(Kp)
consists only of places that are split in K/K+ (so all local L-packets are
singletons) and if the base change of ⇡ to GLn/K is cuspidal (so ⇡ is not obtained
by endoscopic transfer from a nontrivial elliptic endoscopic group of G). When
G is quasisplit multiplicity one has been established for the unitary group by
Mok [Mok15], and the general case has been proved under certain restrictive
hypotheses by Kaletha et al. [KMSW14]. All this work is based in part on results
that have been announced by Arthur but that have not yet appeared.
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We will generally assume that ⇡ satisfies this multiplicity one hypothesis.
This is not indispensable, but it simplifies the notation. However, one of
the referees pointed out that this hypothesis may be restrictive for certain
applications. For example, a ⇡ that is ramified at a prime v that is inert in
K/K+ cannot in general be distinguished from a ⇡ 0 that is isomorphic to ⇡
at all unramified places; indeed, ⇡v can belong to an L-packet that contains
several nonisomorphic representations. Such ⇡ arise naturally by automorphic
induction from representations of unitary groups over cyclic extensions of K+.
In Remark 9.3.2 we sketch a construction without this hypothesis.
We fix a basis of the one-dimensional space H 0(Ph, Kh;⇡1 ⌦C W) and

a choice of E(⇡)-rational spherical vector in ⇡ S
f . Let S(Kr ,C)(⇡) be the

�p
⇡ -isotypic subspace of S(Kr ,C) for the action of Tp

Kr ,
. There is then an

embedding

j⇡ : H 0(Ph, Kh;⇡
Kr ⌦C W) ⇠= ⇡ Kr

f ,! S(Kr ,C)(⇡)

of Tp
Kr ,

-modules.

LEMMA 6.6.5. Let ⇡ be a holomorphic cuspidal automorphic representation of
type (, Kr ), and suppose ⇡ satisfies Hypothesis 6.6.4.

(i) The injection j⇡ defines an isomorphism

j⇡ : ⇡ KS
S ⌦ ⇡ Ir

p
⇠

�! S(Kr ,C)(⇡).

(ii) Let � be any extension of �p
⇡ to a character of TKr ,,R. Let R ⇢ C be a finite

extension of E(⇡) containing the values of �, and let S(Kr , R)[�] be the
localization of the TKr ,,R-module S(Kr , R) at the prime ideal p� ⇢ TKr ,,R

that is the kernel of the character �; in other words, S(Kr , R)[�] is the �-
isotypic component of S(Kr , R). Then j⇡ defines an isomorphism

j⇡ : ⇡ KS
S ⌦ ⇡ Ir

p [�]
⇠

�! S(Kr , R)[�] ⌦R C = S(Kr ,C)[�].

Here ⇡ Ir
p [�] is the subspace of ⇡

Ir
p on which each Uw, j, acts as �(Uw, j,).

6.6.6. The (anti-)ordinary projector and (anti-)ordinary Hecke algebra.
Suppose R ⇢ C is the localization of a finite S0-algebra at the maximal prime
determined by inclp or a p-adic algebra in the sense that ◆p(R) is p-adically
complete.
Recall the definition (111) of the ordinary projector e . Set Tord

Kr ,,R = eTKr ,,R

and Tord
K ,, ,R = eTKr ,, ,R . Then Tord

Kr ,,R and Tord
K ,, ,R are just the rings obtained
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by restricting the Hecke operators to the (stable) subspaces Sord
 (Kr ; R) and

Sord
 (Kr , ; R). For R not p-adic we define the latter modules to be the respective

intersections of S(Kr ; R) and S(Kr , ; R) with the ordinary spaces over the
p-adic completion of R (that is, the completion of inclp(R)).
Similarly, let U�

p, =
Q

w2⌃p

Qn
j=1U

�
w, j, and let e�

 = lim
�!N

(U�
p,)

N ! (as an
operator, when it exists). We call this the anti-ordinary projector, and put
Ta-ord

Kr ,,R = e�
 Td

Kr ,,R and Ta-ord
K ,, ,R = e�

 Td
K ,, ,R .

LEMMA 6.6.7. Suppose R is as above. The isomorphisms of Lemmas 6.6.1(i)–
(ii) and 6.6.2 restrict to R-algebra isomorphisms:

(i) Tord
Kr ,,R

⇠
�! Ta-ord

Kr ,D ,R and Tord
Kr ,, ,R

⇠
�! Ta-ord

Kr ,, �1,R,

(ii) Tord
Kr ,,V,R

⇠
�! Tord

K [
r ,[�V,R

and Tord
Kr ,, ,V,R

⇠
�! Tord

K [
r ,[, �1,�V,R

.

This is immediate from the definitions.

6.6.8. Spaces of ordinary forms and the character �⇡ . Let ⇡ be a holomorphic
cuspidal automorphic representation of G of type (, Kr ). Let

⇡ ord
p = e⇡

Ir
p .

This space has dimension at most one and it does not depend on r , in the sense
that e⇡

Ir
p = e⇡

Ir 0
p for all r 0 > r . This is a consequence of the following:

THEOREM 6.6.9 (Hida). For any representation ⇡p of G(Qp), the ordinary
eigenspace e⇡

Ir
p ⇢ ⇡ Ir

p is of dimension 6 1, for any r.

This theorem is a variant of [Hid98, Corollary 8.3] (we thank Hida for this
reference). The proof, an adaptation of Hida’s, is given in Section 8.3 below.
We will say that ⇡ is ordinary if ⇡ ord

p 6= 0. Note that ⇡ ord
p is stable under the

action of I 0r , and so I 0r will act on ⇡ ord
p (when it is nonzero) through a well-

defined character  ; we call its identification with a character of TH (Zp) the
ordinary nebentypus of ⇡ .
The space

⇡[,a-ord
p,r = e�

D⇡
[,Ir
p ⇢ ⇡[

p

is at most one-dimensional, and is nonzero (and so has dimension one) if and
only if ⇡ ord

p is nonzero. This follows from Lemma 8.3.6 below. While it is not
generally true that ⇡[,a-ord

p,r is independent of r , if r 0 > r then Lemma 8.3.7 asserts
that

traceKr /Kr 0
⇡

[,a-ord
p,r 0 = ⇡[,a-ord

p,r .

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


p-adic L-functions for unitary groups 107

Suppose that ⇡ is ordinary. We let �⇡ be the (unique) extension of �p
⇡ to the

Hecke character giving the action of TKr , on ⇡ ord
p ⌦ ⇡ p,Kp . For R as in 6.6.6,

this character factors through Tord
Kr ,, ,R for  the ordinary nebentypus of ⇡ . Let

E(�⇡ ) be the finite extension of E(⇡) generated by the values of �⇡ , and let
R(�⇡ ) be the localization of the ring of integers of E(�⇡ ) at the maximal ideal
determined by inclp; then �⇡ is R(�⇡ )-valued. Let �̄⇡ be the reduction of �⇡

modulo the maximal ideal of R(�⇡ ); this can be viewed as taking values in the
residue field of Z(p). We let

S(Kr , ,⇡) = {ordinary holomorphic ⇡ 0 of type (, Kr ) such that �̄⇡ 0 = �̄⇡ }.
(149)

Starting in 9.1.6 we will also write ⇡ 0 2 S(Kr , ,⇡) when both ⇡ and ⇡ 0 are
anti-holomorphic (and anti-ordinary); this means that ⇡ 0,[ 2 S(Kr , ,⇡

[) where
⇡[ is holomorphic of type (, Kr ) and the notation is used in the sense of (149).

LEMMA 6.6.10. Let ⇡ be a holomorphic cuspidal automorphic representation
of type (, Kr ). Suppose ⇡ is ordinary. Suppose also that ⇡ satisfies
Hypothesis 6.6.4. Let R ⇢ C be the localization of a finite extension of
R(�⇡ ) at the prime determined by inclp or the p-adic completion of such a ring.
Let E = R[ 1p ].

(i) Sord
 (Kr ; E)[�⇡ ] = e S(Kr ; E)[�⇡ ] and j⇡ restricts to an isomorphism

j⇡ : ⇡ ord
p ⌦ ⇡ KS

S
⇠= ⇡ KS

S
⇠

�! Sord
 (Kr ; E)[�⇡ ] ⌦E C.

(ii) Let m⇡ be the maximal ideal of TKr ,,R that is the kernel of the reduction of
�⇡ modulo the maximal ideal of R. Let Sord

 (Kr ; R)⇡ be the localization of
Sord

 (Kr ; R) at m⇡ . Then

Sord
 (Kr ; R)[⇡ ] := Sord

 (Kr ; R)⇡ \ Sord
 (Kr ; E)[�⇡ ]

is identified by j⇡ with an R-lattice in ⇡ ord
p ⌦ ⇡ KS

S
⇠= ⇡ KS

S , and Sord
 (Kr , R)⇡

is identified with an R-lattice in
M

⇡ 02S(Ks ,,⇡)

⇡ 0,ord
p ⌦ (⇡ 0

S)
KS .

This last identification is via �⇡ 0�⇡ 0 .

We also need a dual picture. Let

Ŝ(Kr ; R) = HomR(S(Kr ; R), R) and
Ŝord

 (Kr ; R) = HomR(Sord
 (Kr ; R), R).
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These are TKr ,,R-modules through the Hecke action on S(Kr ; R), so Ŝord
 (Kr ,

R) is a Tord
Kr ,,R-module. The normalized Serre duality of Section 6.4 identifies

Ŝ(Kr : R) with

Hd
D (Kr , R) = {' 2 Hd(KrSh(V ),!D ) : hS(Kr ; R),'i,Kr ✓ R}.

(The bundle !D is the subcanonical extension of its restriction to the open
Shimura variety; thus, the space Hd(KrSh(V ),!D ) is represented by cusp forms
and the pairing above is well defined.) Let Sord,?

 (Kr ; R) ⇢ Hd
D (Kr , R) denote

the annihilator of Sord
 (Kr ; R) with respect to the pairing h·, ·i,Kr

. Then (the
normalized) Serre duality identifies Ŝord

 (Kr ; R) with

Hd,ord
D (Kr , R)

= {' 2 Hd
! (KrSh(V ),!D )/Sord,?

 (Kr ; R) : hSord
 (Kr ; R),'i,Kr ✓ R}.

Each of these is a TKr ,,R-module through its action on S(Kr ; R) or,
equivalently, the isomorphism of Lemma 6.6.1(i), so Hd,ord

D (Kr ; R) is a Tord
Kr ,,R-

module.

LEMMA 6.6.11. The natural map Hd
D (Kr ; R) ! Hd,ord

D (Kr ; R), which is just
restriction to Sord

 (Kr ; R), induces an isomorphism

e�
D Hd

D (Kr ; R)
⇠

�! Hd,ord
D (Kr ; R). (150)

Proof. This is an immediate consequence of Lemma 8.3.4, (iii).

Let ⇡ be a holomorphic cuspidal automorphic representation of G of type (,
Kr ). Then ⇡[ is anti-holomorphic of type ([, Kr ). The choice of a basis of the
one-dimensional space Hd(Ph, Kh;⇡[

1 ⌦C WD ) determines an injection

j_⇡[ : Hd(Ph, Kh;⇡
[,Kr ⌦C WD ) ⇠= ⇡[,Kr ,! Hd

D (Kr ;C) = Hd(KrSh(V ),!D ).

LEMMA 6.6.12. Let ⇡ , R, and E be as in Lemma 6.6.10. Let Hd,ord
D (Kr , R)⇡ be

the localization of Hd,ord
D ,V (Kr , R) at m⇡[ , and let

Hd,ord
D (Kr , R)[⇡ ] = Hd,ord

D (Kr ; R)⇡ \ Hd,ord
D (Kr ; E)[�⇡ ]

where the notation [�⇡ ] again denotes the �⇡ -isotypic component.

(i) The inclusion j_
⇡[ restricts to an isomorphism

j_⇡[ : ⇡[,a-ord
p,r ⌦ ⇡

[,KS
S

⇠= ⇡ KS
S

⇠
�! Hd,ord

D (Kr , E)[�⇡ ] ⌦E C.
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(ii) The map j_
⇡[ identifies Hd,ord(Kr ; R)[⇡ ] with an R-lattice in ⇡[,a-ord

p,r ⌦ ⇡
[,KS
S ,

and Hd,ord(Kr ; R)⇡ is identified with an R-lattice in
M

⇡ 02S(Kr ,,⇡)

⇡ 0,[,a-ord
p,r ⌦ ⇡

0,[,KS
S .

This last identification is by � j_
⇡

0,[ .

(iii) Normalized Serre duality induces perfect Tord
Kr ,,R-equivariant pairings (with

respect to the isomorphisms of Lemma 6.6.7)

Sord
 (Kr ; R)[⇡ ] ⌦R Hd,ord

D (Kr ; R)[⇡ ] ! R and

Sord
 (Kr ; R)⇡ ⌦R Hd,ord

D (Kr ; R)⇡ ! R.

For any r > 0, we say ⇡ is ordinary of type (, Kr ) if ⇡ is holomorphic of
type (, Kr ) and if the image of j⇡ has nontrivial intersection with Sord

 (Kr , R)
for R as in Lemma 6.6.10 (this is independent of R). In that case, �⇡ , defined as
above, takes values in a p-adic integer ring, sayO⇡ , with residue field k(⇡), and
we let �̄⇡ : TKr , ! k(⇡) denote the reduction of �⇡ modulo the maximal ideal
of O⇡ .

6.6.13. Change of level. For fixed  we consider the inclusion

Sord
,V (Kr , R) ! Sord

,V (Kr 0, R) (151)

with r 0 > r and the dual map

Ŝord
,V (Kr 0, R) ! Ŝord

,V (Kr , R). (152)

LEMMA 6.6.14. Let R be either a local Z(p)[�⇡ ]-algebra or a finite flat Zp[�⇡ ]-
algebra. Then the image of the map (151) is an R-direct factor of Sord

,V (Kr 0,
R), identified with the submodule of Ir/Ir 0-invariants of the latter. Moreover, the
morphism (152) is surjective.

Proof. The first assertion is obvious; the second is an immediate consequence of
the first.

6.7. Normalized periods. Fix the group G = G1 as above. We assume ⇡ to
be an anti-holomorphic representation of G of type (, K ) and anti-ordinary at
p with character  .
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LEMMA 6.7.1. Let R be as in Lemma 6.6.10. The images

L[⇡ ] =
1

Vol(IV,r \ I�V,r )
hHd,ord

,V (K , , R)[⇡ ], Hd,ord
[,�V (K

[
r , 

�1, R)[⇡[]iSer

L⇡ =
1

Vol(IV,r \ I�V,r )
hHd,ord

,V (K , , R)[⇡ ], Hd,ord
[,�V (K

[
r , 

�1, R)⇡[iSer

are rank one R-submodules of C, generated by positive real numbers Q[⇡ ] and
Q⇡ , respectively.

Here we have used the identification (124) to evaluate the pairings.

Proof. Recall that ⇡ f and ⇡
[
f

⇠= ⇡̄ f are defined over the finite extension
E(⇡) ⇢ C of Q. Then Schur’s Lemma together with the irreducibility and
admissibility of the representations ⇡ f and ⇡̄ f implies that the pairing h·, ·iSer is
a C⇥-multiple of a pairing taking values in E(⇡) on given E(⇡)-structures, and
the hermitian nature of the Petersson pairing (and its relation (134) with Serre
duality) shows that this multiple is a positive real number. This is essentially
explained in [Har13a]. Since R is a discrete valuation ring and Hd,ord

,V (K , ,

R) and Hd,ord
[,�V (K

[
r , 

�1, R) are finite R-modules, the result follows immediately
from this.

The numbers Q[⇡ ] and Q⇡ are well defined up to multiples by R⇥; they
are respectively unnormalized and normalized periods for ⇡ . We can also write
Q[⇡ ]V and Q⇡,V to emphasize the dependence on G = G1. Note that Q[⇡[]�V =
Q[⇡ ]V and Q⇡[,�V = Q⇡,V . Furthermore, these periods are independent of r � 0.
This is essentially an easy consequence of the properties of anti-ordinary forms
(see also Lemma 8.4.9)
Let

Hd,ord
, ,V (Kr ,R)[⇡ ]? ⇢ Hd,ord

[,�V (K
[
r , 

�1, R)⇡[

be the orthogonal complement to Hd,ord
,V (Kr , , R)[⇡ ] with respect to

1
Vol(IV,r\I�V,r )

h·, ·iSer. This is the intersection of Hd,ord
[,�V (K

[
r , 

�1, R)⇡[ with
L

⇡ 0 6=⇡[ Hd,ord
[,�V (K

[
r , 

�1, R[ 1p ])[⇡
0].

DEFINITION 6.7.2. Define the congruence ideal C(⇡) = CV (⇡) ⇢ R to be the
annihilator of

Hd,ord
[,�V (K

[
r , 

�1, R)⇡/Hd,ord
[,�V (K

[
r , 

�1, R)[⇡[] + Hd,ord
,V (Kr , , R)[⇡ ]?.

LEMMA 6.7.3. Let c(⇡) 2 R be such that c(⇡)Q⇡ = Q[⇡ ]. Then c(⇡) is a
generator of C(⇡).
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Proof. This is an elementary consequence of the definitions.

More generally, the congruence ideal C(⇡,M) can be defined for any T[,ord
K [,[,R-

module M as the annihilator of M⇡[/(M[⇡[] + M[⇡ ]?), where the notation
has the same meaning as above. In particular, we can define C(⇡,T) to be
the congruence ideal for Tord

K ,,R
⇠

�! T[,ord
K [,[,R considered as a free module over

itself.

REMARK 6.7.4. The congruence ideal C(⇡) has a local component, due to
possible congruences between the representation ⇡[,ord

p ⌦ ⇡
[,KS
S and the ⇡[,ord

p ⌦
(⇡ 0

S)
[,KS for ⇡ 0 such that �̄⇡ = �̄⇡ 0 . Here if S has the property that, for every

rational prime q, either all the primes ofK+ dividing q split inK or none of them
does, we can view the latter as representations of the (integral) Hecke algebra of
KS-biinvariant functions on GU(V )(A f,S). The separation of global and local
components of C(⇡) will need to be understood for applications, but it is not
addressed here.

6.7.5. Normalized periods twisted by Hecke characters. Let � be a Hecke
character of type A0. The twisted pairings (4.1.6) and (147) give rise to
period invariants that account for the Hecke character twist. We reformulate
Lemma 6.7.1 in this framework. If the (anti-holomorphic) representation ⇡[

contributes to the space denoted Hd,ord
[,�V , we let [ ? � denote the coherent

cohomology space to which ⇡[ ⌦ ��1 � det contributes. Then we can define
the R-module

Hd,ord
[,�V (K

[
r , 

�1, R)[⇡[]� := Hd,ord
[?� ,�V (K

[
r , 

�1, R)[⇡[ ⌦ ��1 � det].

Note: This is not a simple algebraic twist of the original Hd,ord
[,�V (K

[
r , 

�1,

R)[⇡[]! Even the rational structure is modified by a CM period corresponding to
� . See [Har97, Section 2.9] for examples of this when F+ = Q.
The extension of Lemma 6.7.1 is then

LEMMA 6.7.6. Let R be as in Lemma 6.6.10. The images

L[⇡ ] =
1

Vol(IV,r \ I�V,r )
hHd,ord

,V (K , , R)[⇡ ], Hd,ord
[,�V (K

[
r , 

�1, R)[⇡[]iSer

L⇡ =
1

Vol(IV,r \ I�V,r )
hHd,ord

,V (K , , R)[⇡ ], Hd,ord
[,�V (K

[
r , 

�1, R)⇡[iSer

are rank one R-submodules of C, generated by positive real numbers Q[⇡,� ]
and Q⇡,� , respectively.
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We may define C(⇡,�) by analogy with C(⇡). Then the relation between the
two period invariants is again determined by a congruence number:

LEMMA 6.7.7. Let c(⇡,�) 2 R be such that c(⇡,�)Q⇡,� = Q[⇡,� ]. Then
c(⇡,�) is a generator of C(⇡,�).

However, since the family of p-adic Hecke characters is smooth, it is easy to
see that C(⇡,�) and c(⇡,�) do not depend on � .

6.7.8. The Gorenstein hypothesis and the congruence module. In what follows,
R is a sufficiently large finite flat p-adic integer ring.

DEFINITION 6.7.9. Write T = T⇡ := (Tord
K ,,R)⇡ . The T-module Sord

 (K , R)⇡ is
said to satisfy the Gorenstein hypothesis if the following conditions hold.

• There exists an isomorphism

G = GK ,,R : T ⇠
! HomR(T, R)

as T-modules.

• Sord
 (K , R)⇡ is free over T.

The Tord
K ,,R-module Sord

 (K , R) is said to satisfy the Gorenstein hypothesis if all
its localizations at maximal ideals of TK ,,R satisfy the two conditions above.

Note that we are using the notation T rather than T for the localization at a
maximal ideal of the ordinary Hecke algebra. The following is then obvious.

LEMMA 6.7.10. Assume Sord
 (K , R)⇡ satisfies the Gorenstein hypothesis. Then

we have
CV (⇡) = C(⇡,T) = C�V (⇡

[).

The congruence ideal for ⇡ can be calculated as follows. We assume the
multiplicity one hypothesis, so that the localization of T at the kernel of �⇡ is
of rank 1 over R. Let e1, . . . , en be an R-basis for T, and let e⇤

1, . . . , e
⇤
n be the

dual basis of HomR(T, R). Write E = Frac(R), and write

TE = T ⌦R E = �Ei ,

indexed by the maximal ideals �⇡i of T, with ⇡ = ⇡1. We assume R is
sufficiently large that E1 = E . Choose d1, . . . , dn 2 T that form a basis of TE ,
with d1 an R-generator of T\ E1 and d2, . . . , dn an R-basis of T\

L
i>1 Ei .
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Write ei =
P

ci jd j , with ci j 2 E . Then

C(⇡,T) = sup
ci1 6=0

� v(ci1) (153)

where v is the valuation on R.
The following lemma is then clear:

LEMMA 6.7.11. The second isomorphism of Lemma 6.6.2 takes C(⇡)
isomorphically to C(⇡[).

We omit the statement of the analogous assertion for the ideal C(⇡,�) which,
as noted above, does not actually depend on � .

REMARK 6.7.12. The normalized period Q⇡ and the generator c(⇡) of the
congruence ideal are well defined up to units in R. However, this ambiguity
is unsatisfactory; one expects there is a natural choice of global function c in T
which is not a zero divisor and whose value at the classical point ⇡ generates
C(⇡). This would allow a uniform choice of periods Q⇡,� .
Let Gn be the algebraic group introduced in [CHT08] as the target of the

compatible family of `-adic representations attached to ⇡ ; it is the semidirect
product of GL(n) ⇥ GL(1) with the Galois group of K/K+. It is natural to
expect that c can be taken to be a p-adic L-function attached to the adjoint
representation on the Lie algebra of Gn . The corresponding complex L-function
has a single pair of critical values, interchanged by the functional equation, so the
hypothetical p-adic L-function would be an element of T, without any additional
variation for twists by characters.

7. Families of ordinary p-adic modular forms and duality

7.1. Big Hecke algebras. We return to the notation of Sections 6.6 and 6.6.6.
In particular G = G1, and we let TH = TH1(Zp) be the torus introduced in
Section 2.5.
Let R be a p-adic ring. The inclusion Sord

 (Kr , R) ⇢ Sord
 (Kr 0, R), r 0 > r ,

defines by restriction a map of ordinary Hecke algebras Tord
Kr 0 ,,R

! Tord
Kr ,,R . Let

Tord
Kp,,R = lim

 �
r

Tord
Kp
r ,,R

.

The following theorem is due to Hida:

THEOREM 7.1.1. For any pair of characters 1, 2 of TH , there is a canonical
isomorphism

Tord
Kp,1,R

⇠
�! Tord

Kp,2,R.
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Thus, we drop the superscript ‘ord’ and write TKp,R to designate any Tord
Kp,,R

without fear of ambiguity. We will even writeT forTKp,R when there is no danger
of ambiguity.

REMARK 7.1.2. In the application to unitary groups this theorem and
Theorem 7.2.1 are special cases of [Hid02, Theorem 7.1] and the results
of [Hid04, Ch. 8]. Hida’s Theorems 7.1.1 and 7.3.1 are proved assuming the
conditions (G1)–(G3) mentioned in connection with (32).

As noted in (140), the trace map traceKr /Kr 0
maps Hd

D (Kr 0; R) to Hd
D (Kr ; R)

for all r 0 > r > 0. It follows easily from the definition of the anti-ordinary
projectors e�

D that this trace map also maps e�
D Hd

D (Kr 0; R) to e�
D Hd

D (Kr 0; R),
yielding a natural homomorphism Ta-ord

Kr 0 ,
D ,R ! Ta-ord

Kr ,D ,R that is compatible with
the isomorphisms of Lemma 6.6.7(i) and the maps Tord

Kr 0 ,,R
! Tord

Kr ,,R . In
particular, putting

Ta-ord
Kp,D ,R = lim

 �
r

Ta-ord
Kp
r ,D ,R,

the isomorphisms of Lemma 6.6.7(i) induce an isomorphism

Tord
Kp,,R

⇠
�! Ta-ord

Kp,D ,R. (154)

Note that it then follows from Theorem 7.1.1 that Ta-ord
Kp,D ,R is also independent

of the weight D, and we write Ta-ord
Kp,r for Ta-ord

Kp,D ,R .
We similarly define

T[
Kp,R := Tord

K p,[,[,R = lim
 �
r

Tord
K p,[
r ,[,R

and T[,ord
Kp,R = Ta-ord

K p,[,[,D ,R = lim
 �
r

Ta-ord
K p,[
r ,[,D ,R

.

We then have isomorphisms

TKp,R
⇠

�! T[

K p,[,R
⇠

�! T[,a-ord
K p,[,R, (155)

where the first isomorphism is induced by those of Lemma 6.6.7(ii), and
the second isomorphism is induced by the corresponding version of the
isomorphisms in part (i) of the same lemma.
Via the isomorphisms in (154) and (155) we will view Hd,ord

D (Kr ; R),
S[(K [

r ; R), and Hd,ord
[,D (K [

r ; R) as TKp,R-modules.

7.2. The control theorem. Let ⇤R = R[[T ]], the completed group algebra of
the integer points T = TH (Zp) of the torus TH . Then TKp,R is a ⇤R-module such
that t 2 T is identified with the Hecke operator Kr tKr . For any tame character ✏
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of T we let ⇤R,✏ denote the localization of ⇤R at the maximal ideal defined by ✏.
Let ⇤o

R ⇢ ⇤R be the completed group algebra of the maximal pro-p-subgroup
of T , and define ⇤o

R,✏ analogously. As noted above (see also (33)) the following
Theorem is a special case of [Hid02, Theorem 7.1].

THEOREM 7.2.1.

(i) For each tame character ✏, the Hecke algebra TKp,R,✏ is a finite, free ⇤o
R,✏-

algebra.

(ii) (Control theorem) Let I ⇢ ⇤o
R be the kernel of the map ⇤o

R ! R ⇢ Cp

defined by the character  . Suppose  is sufficiently regular. Then the
natural homomorphism

TKp,R ⌦⇤o
R
⇤o

R/I ! TKp
r ,,R

is an isomorphism.

7.3. The Gorenstein and multiplicity one hypotheses. Fix a cuspidal
holomorphic automorphic representation ⇡ of G = G1 which is ordinary of
type (, K ) as in Section 6.6. (Be warned, however, that in the main theorem
⇡ denotes an anti-holomorphic representation.) We let R = O⇡ , and let
⇤⇡ = ⇤O⇡

:= O⇡ [[T ]], ⇤o
⇡ = ⇤o

O⇡
. The homomorphisms �⇡ : TK ,,O⇡

! O⇡

and �̄⇡ : TK ,,O⇡
! k(⇡) induce homomorphisms L⇡ : TKp,O⇡

! O⇡ and
L̄⇡ : TKp,O⇡

! k(⇡) of ⇤⇡ -algebras. Let m⇡ = ker L̄⇡ , and let

T = T⇡ := TKp,O⇡ ,m⇡

denote the localization, with notation as in Section 6.7. Here and below we use
T to designate an ordinary Hecke algebra (at fixed level Ir or not) localized at
⇡ , and T to designate a nonlocalized ordinary Hecke algebra. The intersection
m⇡ \ ⇤⇡ is the maximal ideal defined by some tame character of T .
The following theorem is immediate from Theorem 7.2.1.

THEOREM 7.3.1.

(i) The Hecke algebra T⇡ is a finite, free ⇤o
⇡ -algebra.

(ii) (Control theorem) Let I ⇢ ⇤o
⇡ be the kernel of the map ⇤o

⇡ ! O⇡ ⇢
Cp defined by the character  . Suppose  is sufficiently regular. Then the
natural map

T⇡ ⌦⇤o
⇡

⇤o
⇡/I ! TKp

r ,,O⇡

is an isomorphism.
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Here and in what follows, for any r and Kp we will let T⇡ act on
HomO⇡

(Sord
 (Kp

r ,O⇡ ),O⇡ )m⇡
by the natural action. We consider the following

hypotheses:

HYPOTHESIS 7.3.2. (Gorenstein Hypothesis) Let T̂⇡ = Hom⇤o
⇡
(T⇡ ,⇤

o
⇡ ). Then:

(i) There exists an isomorphism

G = G⇡ : T̂⇡
⇠
! T⇡

of free rank one T⇡ -modules.

(ii) HomO⇡
(lim
�!r

Sord
 (Kp

r ,O⇡ ),O⇡ )m⇡
is a free T⇡ -module.

This is, of course, a variant of the condition 6.7.9 of the previous section.
The isomorphism G⇡ induces compatible isomorphisms at finite level Kr , as
in Definition 6.7.9, for r > 1; we denote these isomorphisms Gr in the following
sections. Recall the set (149), and let

S(Kp,⇡) =
[

r>1

[

1

S(Kr , 
1,⇡);

these are automorphic representations ⇡ 0 of varying level at p and weight but
with �̄⇡ 0 = �̄⇡ .

HYPOTHESIS 7.3.3. (Global Multiplicity One) Let ⇡ 0 2 S(Kp,⇡). Then the
representation ⇡ 0 occurs with multiplicity one in the cuspidal spectrum of G.

This is the extension of Hypothesis 6.6.4 to all ⇡ 0 2 S(Kp,⇡), but it is weaker
because it is refers to the global automorphic representation and not only to
the corresponding character of the global unramified Hecke character. As noted
above, it is implied by [Mok15, KMSW14]. By Theorem 7.1.1 we may identify
T⇡ with T⇡ 0 for ⇡ 0 2 S(Kp,⇡).

7.3.4. Local representation theory. Henceforth, we abuse notation and writeO
forO⇡ . (The ring of integers ofK does not appear in the context in which we do
this; so we will only be using O for O⇡ here.) We usually include the subscript
‘⇡ ’ for clarity.

By hypothesis, HomO(lim�!r
Sord

 (Kr ,O)m⇡
,O) is a free T⇡ -module of finite

rank. We fix a finite, free O-module Î⇡ together with a T⇡ -isomorphism

T⇡ ⌦O Î⇡
⇠

�! HomO(lim�!
r

Sord
 (Kr ,O)m⇡

,O) = lim
 �
r

Hd,ord
 (Kr ,O)⇡ .
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By part (ii) of Theorem 7.3.1, tensoring over ⇤⇡ with ⇤⇡/I gives an
isomorphism

TK p
r ,,O ⌦O Î⇡

⇠
�! HomO(Sord

 (Kr ,O)m⇡
,O) = Hd,ord

D (Kr ,O)⇡ .

Restricting to the �⇡ -isotypical parts of both sides yields isomorphisms

Î⇡
⇠

�! TK p
r ,,O[�⇡ ]⌦O Î⇡ = (TK p

r ,,O,⇡ ⌦O Î⇡ )[�⇡ ]
⇠

�! Hd,ord
D (Kr ,O)[�⇡ ],

and the map j_
⇡[ yields an injection

Hd,ord
D (Kr ,O)[�⇡ ]

( j_
⇡[ )

�1

,! ⇡[,a-ord
p,r ⌦ ⇡

[,KS
S

⇠= ⇡
[,KS
S ,

where the last isomorphism comes from fixing a basis element f a-ord
⇡

[
p,r

of the 1-

dimensional Frac(O)-space ⇡[,a-ord
p . In particular, Î⇡ is identified with a free O-

lattice in ⇡
[,KS
S . (The anti-ordinary subspace ⇡[,a-ord

p ⇢ ⇡[,Ir
p is the tensor product

over w | p of the local anti-ordinary subspaces ⇡
a-ord,Iw,r
w , which will be defined

in Lemma 8.3.6.)
Tensoring with TK p

r ,,O/ker(�⇡ ) yields isomorphisms

Î⇡
⇠

�! TK p
r ,,O/ker(�⇡ ) ⌦O Î⇡

⇠
�! HomO(Sord

 (Kr ,O)[�⇡ ],O).

Letting
I⇡ = Hom( Î⇡ ,O),

we then get an O-module injection

I⇡
⇠

�! Sord
 (Kr ,O)[�⇡ ] ,! ⇡ ord

p ⌦ ⇡ KS
S

⇠= ⇡ KS
S ,

where the last isomorphism comes from fixing a basis f ord⇡p
of the one-

dimensional Frac(O)-space ⇡ ord
p .

In view of the comment following Hypothesis 7.3.3, the following
consequence of Hypotheses 7.3.2 and 7.3.3 follows from the preceding
discussion and Theorem 7.1.1.

PROPOSITION 7.3.5 (Minimality hypothesis). For every pair (1, r 1), there is
an isomorphism of TKp

r1
,1,O,⇡ -modules

TKp
r1
,1,O,⇡ ⌦ Î⇡

⇠
�! Hom(Sord

1 (Kp
r1,O)m⇡

,O)
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such that the following diagrams commute when r 1 > r:

TKp
r1
,1,O,⇡ ⌦ Î⇡

⇠
����! HomO(Sord

1 (K
p
r1,O)m⇡

,O)
??y

??y

TKp
r ,1,O,⇡ ⌦ Î⇡

⇠
����! HomO(Sord

1 (Kp
r ,O)m⇡

,O).

Moreover, the specialization of this isomorphism at the O-valued point �⇡

(tensoring both sides over TKp
r1
,1,O,⇡ with TKp

r1
,1,O,⇡/ker(�⇡ ) ' O) gives rise

to a commutative diagram

TKp
r1
,1,O,⇡/ker(�⇡ ) ⌦O Î⇡

⇠
�����! HomO(Sord

1 (K
p
r1 ,O)m⇡

,O) ⌦TKp
r ,1 ,O,⇡

TKp
r1
,,O,⇡/ker(�⇡ )

??y=

??y

O ⌦O Î⇡ �����! HomO(I⇡ ,O)

where the bottom arrow is just the tautological isomorphism Î⇡
⇠

�! Hom(I⇡ ,
O).

Assuming that HomO(lim�!r
Sord

[ (K [
r ,O)m[

⇡
,O) is a free T⇡[-module of finite

rank and using the isomorphism T⇡
⇠= T⇡[ arising from Lemma 6.6.7(ii), we can

similarly fix a T⇡ -module isomorphism

T⇡ ⌦O I⇡
⇠

�! HomO(lim�!
r

Sord
[ (K [

r ,O)m[
⇡
,O) = lim

 �
r

Hd,ord
[ (K [

r ,O)⇡

with corresponding properties. Since ⇡ ! ⇡[, g 7! g[, maps holomorphic forms
to anti-holomorphic forms, is natural to identify the free O-module Î⇡[ with I⇡ .

7.4. Equivariant measures. In this section we consider measures with
values in p-adic modular forms on G3. We fix a prime-to-p level subgroup
Kp

1 ⇢ G1(Ap
f ) and let K1,r = Ir K

p
1 ⇢ G1(A f ). Under the canonical identification

G2(A f ) = G1(A f ), let K
p
2 = (Kp

1 )
[ ⇢ G2(A f ) and K2,r = K [

1,r ⇢ G2(A f ). Let
Kp = (Kp

1 ⇥ Kp
2 ) \ G3(Ap

f ) and K3,r = (K1,r ⇥ K2,r ) \ G3(A f ). For O = O⇡

as above, we write V = V ord,cusp(Kp,O) for the corresponding space of ordinary
p-adic cusp forms on G3 with values in O.

REMARK 7.4.1. Although the Eisenstein measure does not generally take values
in the space of cusp forms, even after ordinary projection, we will be localizing
at a non-Eisenstein maximal ideal of the Hecke algebra. Much of the discussion
below applies without change to measures with values in the space of ordinary
p-adic forms.
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Guide to this section. The aim of this section is to explain how to obtain a
p-adic analytic function L from a V-valued measure on the group X p ⇥ T
as in 5.2.2, under the Gorenstein and Global Multiplicity One Hypotheses of
the previous section. In the application the factor X p contributes a CM Hecke
character � , which parametrizes the Eisenstein measure, and T parametrizes
the weights of a Hida family; by this we mean that the localization T = T⇡

of the big ordinary Hecke algebra at the maximal ideal corresponding to a
cuspidal holomorphic representation ⇡ of G1 = G2 is a finite flat ⇤-algebra,
where ⇤ is the Iwasawa algebra of the torus T . The function L should be
viewed as an element of the completed tensor product ⇤X p ⌦̂T. However,
because we have not specified canonical local test vectors at ramified places,
our methods only provide a canonical element of ⇤X p ⌦̂T ⌦ EndO(I⇡ ). Let
us suppose for the remainder of this paragraph that EndO(I⇡ ) is a free rank
one module over the coefficient ring O; in other words, that we can ignore
ramified places. We also simplify the situation by assuming that T = ⇤ (so
that the Gorenstein Hypothesis is automatic). The result of the construction is
then a measure on X p ⇥ T . This is defined by interpolating locally constant
functions on T—functions that are constant modulo the open subgroups Tr
to be introduced below—obtained from the Eisenstein measure, which is
itself a V-valued measure on X p. The fundamental property of the Eisenstein
measure is summarized in Assumption 7.4.4 below: that at every finite level
Kr it defines a Hecke-equivariant map from the O-dual of the holomorphic
forms of fixed weight ⇢ to the O-module of holomorphic forms. (Later the
O-dual of the holomorphic forms will be identified by Serre duality with
an O-lattice in a coherent cohomology space of top degree, and then with
something roughly equivalent to an O-lattice in the space of anti-holomorphic
forms.) As r varies, these maps satisfy the distribution relations, proved
as Lemma 7.4.9, that guarantees that they patch together into a p-adic
measure.
We choose a sequence of congruence subgroups T � · · · � Tr � Tr+1 · · · such

that
T

r Tr = {1}. Recall that ⇤ = ⇤⇡ =O[[T ]]. Let Ir ⇢ ⇤ be the augmentation
ideal of Tr , and let ⇤r = ⇤/Ir . For O as above, let Cr (T,O) = C(T/Tr ,
O) be the (free) O-module of Tr -invariant functions on T . Then there is a
natural identification⇤r = HomO(Cr (T,O),O); alternatively, viewing⇤ as the
algebra of distributions on T with coefficients in O, and C(T,O) the module
of continuous O-valued functions on T , the canonical pairing ⇤⇡ ⌦ C(T,
O) ! O restricts to a pairing ⇤ ⌦ Cr (T,O) ! O which factors through
a perfect pairing ⇤r ⌦ Cr (T,O) ! O.
Let ⌘r : Cr (T,O) ,! Cr+1(T,O) be the canonical inclusion. The next lemma

follows from the definitions. Note that V = V ord,cusp
3 (Kp,O) is a ⇤O-module
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by the action on the first factor. We fix an involution � : T ! T and for any
function ⇢ 2 C(T,O) define ⇢� = ⇢ � �.

LEMMA 7.4.2. Fix a character ⇢ : T ! O⇥ and let Cr (T,O) ·⇢� ⇢ C(T,O)
denote multiples of ⇢� by elements of Cr (T,O). There is an equivalence between

(1) V-valued measures � on T satisfying

�(t · f ) = ⇢�(t) · �( f ), f 2 C(T,O), t 2 T ;

(2) Collections �⇢ = (�r,⇢) with

�r,⇢ 2 Hom⇤(Cr (T,O) · ⇢�,V),

satisfying ⌘⇤
r (�r+1,⇢) = �r,⇢ , where ⌘⇤

r is induced by the dual to ⌘r .

The equivalence is such that �( f ) = �r,⇢( f · ⇢�) for f 2 Cr (T,O).

We let Ir,⇢ ⇢ ⇤ be the annihilator of Cr (T,O) · ⇢� , and let ⇤r,⇢ = ⇤⇡/Ir,⇢ .
Thus, Lemma 7.4.2 identifies equivariant measures on T with twist ⇢� with
collections of linear forms on⇤r,⇢ that are compatible with the natural projection
maps as r varies.
Let V̂ = HomO(V,O) and let � be an equivariant measure on T with twist

⇢� as above. We assume � to be the specialization at a character � of X p of
an admissible measure in two variables with shift sh⇤(�) = (↵(�),�(�)) and
twist � as in Section 5.2.2. So � is equivalent to some �� ,⇢ = (�� ,r,⇢) as in the
preceding lemma (we write �� ,r,⇢ to indicate dependence on � ).

REMARK 7.4.3. We write

M1(K1,r , 1; R)[⌦]RM2(K2,r , 2; R)

for the image of res4 in M(K3,r , ; R), and use the notation [⌦]more generally
for restrictions of this kind from (classical or p-adic) modular forms on G1 ⇥G2

to forms on G3.

For  = ⇢ · ↵(�) sufficiently regular,

Im(�� ,r,⇢) ⇢ Sord
(⇢·↵(�)),V (K1,r ,O)[⌦]Sord

(⇢[·�(�)),�V (K2,r ,O) (156)

where the notation [⌦] is as in Remark 7.4.3.
We also have

V̂ = lim
 �
r

HomO(Sord
⇢,V (K1,r ,O)[⌦]Sord

⇢[,�V (K2,r ,O),O).

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


p-adic L-functions for unitary groups 121

In the situation of (156), assuming  = ⇢ · ↵(�) is sufficiently regular, we thus
have

Im(�� ,r,⇢) ⇢ HomO(Ŝord
(⇢·↵(�)),V (K1,r ,O), Sord

(⇢[·�(�)),�V (K2,r ,O)).

The following hypothesis expresses a basic property of the Garrett map that is
the basis of the doubling method for studying standard L-functions of classical
groups.

ASSUMPTION 7.4.4.

Im(�� ,r,⇢) ⇢ HomTr,⇢·↵(�) (Ŝ
ord
(⇢·↵(�)),V (K1,r ,O), Sord

(⇢·↵(�))[,�V (K2,r ,O) ⌦ � � det).

Recall that Tr,⇢·↵(�) acts on Sord
(⇢·↵(�))[,�V (K2,r ,O) via the map in

Lemma 6.6.7(ii). Also bear in mind that �� ,r,⇢ designates integration of functions
locally equal to ⇢� – not ⇢ – against the specialization at � of a two-variable
measure.

REMARK 7.4.5. We sometimes write  = ⇢ · ↵(�) when we want to emphasize
the weight of the specialized Hecke algebra rather than the weight of the
character of T . Here and below the algebra T = Tr,⇢·↵(�) ignores the twist by
� � det at the end. One checks that incorporating the � � det into the subscript of
the second Sord replaces ↵(�)[ by the �(�) of (156).

Now let ⇡ be an anti-holomorphic representation of G1 of type ( = ⇢ ·
↵(�), Kr ). Let �� ,r,⇢,⇡ denote the composition of �� ,r,⇢ with projection on the
localization at the ideal m⇡ in the first variable. Bearing in mind our conventions
for the subscripts ⇡ and ⇡[ , it then follows from Assumption 7.4.4 that

Im(�� ,r,⇢,⇡ ) ⇢ HomTord
r,,V,⇡

(Ŝord
,V,⇡ (K1,r ,O), Sord

[,�V,⇡[(K2,r ,O)⌦ � � det). (157)

Now both Ŝord
,V,⇡ (K1,r ,O) and Sord

[,�V,⇡[(K2,r ,O) are T⇡ -modules, and indeed
the Gorenstein hypothesis guarantees that they are free Tr,,⇡ -modules (in the
obvious notation) of the same rank. In the next few paragraphs they are denoted
Ŝord
r,V,⇡ and Sord

r,�V,⇡[ to save space, the character ( = ⇢ · ↵(�)) being understood.
Recall that by the discussion in Section 7.3.4 there are T⇡ -module

isomorphisms
Tr,,⇡ ⌦ Î⇡

⇠
�! Ŝord

r,V,⇡

and
T̂r,,⇡ ⌦ Î⇡

⇠
�! Sord

r,�V,⇡[ .
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(These isomorphisms depended on certain choices, but the final results will not
depend on these).
Thus, Assumption 7.4.4 yields (with  = ⇢ · ↵(�) as above)

ASSUMPTION 7.4.6.

Im(�� ,r,⇢,⇡ ) ⇢ HomTr,,⇡ (Ŝ
ord
r,V,⇡ , S

ord
r,�V,⇡[ ⌦ � � det)

⇠
�! HomTr,·a(�) (Tr,,⇡ ⌦ Î⇡ , T̂r,,⇡ ⌦ I⇡[)

⇠
�! HomTr, (Tr,,⇡ , T̂r,,⇡ ) ⌦O EndO(I⇡[).

Here we have tensored with ��1 � det in the first line.
In the remainder of this subsection we no longer need to localize at m⇡ . We

write Cr = Cr (T,O) and drop theO’s from the notation for modules of ordinary
cusp forms, and ignore the twists by � �det where relevant. The natural inclusion
Cr ,! Cr+1, together with the map ◆⇤r : Ŝ

ord
r+1,V ! Ŝord

r,V (dual to the tautological
inclusion ◆r : Sord

r,V ,! Sord
r+1,V ) defines a diagram

HomTr+1, (Cr+1 ⌦ Ŝord
r+1,V , S

ord
r+1,�V )

⌘⇤
r ⌦id⇤

r+1
����! HomTr+1, (Cr ⌦ Ŝord

r+1,V , S
ord
r+1,�V )x??i⇤r

HomTr, (Cr ⌦ Ŝord
r,V , S

ord
r,�V )

Here id⇤
r+1 : Ŝ

ord
r+1,V ! Ŝord

r+1,V is the identity map and i⇤r is the dual to ◆r (applied
in the contravariant variable) composed with ◆r (in the covariant variable). It
follows from the equivariance hypothesis that the tensor products (Cr+1 ⌦ Ŝord

r+1,V
and the other two) can be taken over ⇤⇡ , and then HomTr+1, is relative to the
action of the Hecke algebra on Ŝord

r+1,V and Sord
r+1,�V . Then

FACT 7.4.7. Under Assumption 7.4.4 we have that, for all r , the image of �r+1,

under ⌘⇤
r ⌦ id⇤

r+1 lies in Im(◆⇤r ). More precisely,

(⌘⇤
r ⌦ id⇤

r+1)(�r+1,) = ◆r � �r, � (idCr ⌦ ◆⇤r ) (158)

as maps from Cr ⌦ Ŝord
r+1,V to Sord

r+1,�V , where idCr is the identity map on Cr .

7.4.8. Serre duality and change of level. We can interpret the map ◆⇤r with
respect to the Serre duality pairing (132) as follows. In this section we let R0

be a finite Z(p)-algebra with p-adic completion R0 ,! O⇡ . Identify S,V (Kr ,
R0) with an R0-lattice in H 0

! (KrSh(V ),!). Let H 0,ord
! (KrSh(V ),!) be the C-

linear span of Sord
,V (Kr , R0) and let Hd,ord

! (KrSh(V ),!D
 ) be the corresponding
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quotient of Hd
! (KrSh(V ),!D

 ); then the action of the Hecke algebra identifies
Hd,ord

! (KrSh(V ),!D
 ) as a direct summand of Hd

! (KrSh(V ),!D
 ) that is in a

perfect pairing with H 0,ord
! (KrSh(V ),!). We can thus identify Ŝord

,V (Kr , R0)with
an R0-lattice in Hd,ord

! (KrSh(V ),!D
 ) in such a way that

Ŝord
,V (Kr , R0) = Hd,ord

! (KrSh(V ),!D
 )(R0)

:= {h 2 Hd,ord
! (KrSh(V ),!D

 ) | h f, hi,Kr
2 R0 8 f 2 Sord

,V (Kr , R0)}.

(159)

The following statements (Lemma 7.4.9, Proposition 7.4.10, and
Definition 7.4.11) are written in terms of  rather than ⇢ · ↵(�), for simplicity.

LEMMA 7.4.9. With respect to the identification (159), the map

◆⇤r : Ŝ
ord
,V (Kr+1, R0) ! Ŝord

,V (Kr , R0)

is given by the trace map:

tr (h) =
#(I 0r /Ir )

#(I 0r+1/Ir+1)

X

�2Kr /Kr+1

� (h).

In particular, the trace map tr defines a surjective homomorphism

Hd,ord
! (Kr+1Sh(V ),!D

 )(R0) ! Hd,ord
! (KrSh(V ),!D

 )(R0).

Proof. This is essentially a rewording of Section 6.4.

Now we complete at m⇡ but omit the subscript ⇡ from the notation; so O =
O⇡ . As in Assumption 7.4.6 we can identify

HomTr, (Cr ⌦ Ŝord
r,V , S

ord
r,�V ) ' HomTr, (Cr ⌦ Tr, ⌦ Î⇡ , T̂r, ⌦ I⇡[)

= HomTr, (Cr ⌦ Tr, , T̂r,) ⌦ EndO(I⇡[)

' T̂r, ⌦ EndO(I⇡[).

We are using Proposition 7.3.5 systematically. Be advised that T = T⇡ in the
following Proposition.

PROPOSITION 7.4.10. With respect to the identifications

HomTr, ,[(Cr ⌦ Ŝord
r,V , S

ord
r,�V ) ' T̂r, ⌦ EndO(I⇡[),
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(158), and the isomorphism Gr : T̂r,
⇠

�! Tr, of the Gorenstein
Hypothesis 7.3.2, the measure {�r,} defines an element

L(�) 2 lim
 �
r

Tr, ⌦ I⇡[ ⌦ I⇡
⇠

�! T ⌦ EndO(I⇡[).

Moreover, if 1 is a second sufficiently regular character, then L(�) and L(�1)

are identified with respect to the identifications T ⇠
�! TKp,,O⇡

⇠
�! TKp,1,O⇡

of Theorem 7.1.1 (after localization at ⇡ ). Thus, the measures {�r,} and {�r,1}
define the same element L(�) 2 T ⌦ EndO(I⇡[). Conversely, any such L(�)
defines a measure {�r,} for any sufficiently regular  .

Proof. This is a consequence of Lemma 7.4.9 and follows by unwinding the
definitions.

The above construction adapts easily to accommodate the compact p-adic Lie
group X p. We have seen that a V-valued measure on X p ⇥ T is the same thing
as a measure on X p with values in V-valued measures on T . In particular, one
obtains a V-valued measure on X p ⇥ T from a collection, for all characters ↵ of
X p, of V-valued measures �↵ of type ↵ on T satisfying the congruence properties
of Lemma 5.1.3.
In what follows we identify T with the ordinary Hecke algebra for the

group G = G1; the same definition holds, with appropriate modifications, when
G = G2.

DEFINITION 7.4.11. Fix a level r , a character  , and an O-algebra R. Let � :
T ! R be a continuous homomorphism. Say � is classical of level pr and
weight  if it factors through a homomorphism (still denoted) � : Tr, ! R,
which is of the form �⇡ for some anti-holomorphic automorphic representation
⇡ of type (, K1,r ) with K1,r = Kp Ir for some open compact Kp ⇢ G(Ap

f ), as
before.
Let X (, r, R) denote the set of classical homomorphisms of level pr and

weight  with values in R; let X class(R) =
S

,r X (, r, R). Any � 2 X class(R) is
called classical (with values in R).
When R = Tr, , we let �taut : Tr, ! Tr, be the identity homomorphism.

When ⇡ is a cuspidal anti-holomorphic representation of weight  as above, let
�taut,⇡ : Tr, ! Tr,,⇡ be �taut followed by localization at m⇡ .

When  is sufficiently regular, the character �taut deserves to be called classical
because its composition with any map from Tr, to a p-adic field is attached to
a classical modular form of weight  . The relationship between L(�) and the
elements �� ,r, is given by the following proposition.
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PROPOSITION 7.4.12. Let � be a character of X p. Let � = d�(x, t) be a
measure on X p⇥T as in Section 5.2.2, with shift sh: sh⇤(�)= (↵(�),�(�)). Let
⇢ be an algebraic character of T ,  = ⇢ ·↵(�). Fix a cuspidal anti-holomorphic
representation ⇡ of weight  satisfying the hypotheses above. We consider
L(�� ) =

R
X p

�(x) d�(x, t), localized at m⇡ , as an element of T ⌦ EndR(I⇡[).
Let L(�� , , r) denote the image of L(�� ) in Tr, ⌦ EndR(I⇡[). Equivalently,

L(�� , , r) =
Z

X p⇥T
� ⇥ �taut,⇡ d�(x, t),

where integration against �taut,⇡ amounts to the projection

T ⇣ T ⌦⇤ ⇤r, = Tr,

followed by localization at m⇡ .
Then L(�� , , r) corresponds to the element

�� ,r, 2 HomTr, (Cr ⌦ Ŝord
r,V,⇡ , S

ord
r,�V,⇡[ ⌦ � � det)

under the identifications in Proposition 7.3.5, compatible with the Gorenstein
isomorphism Gr (from Proposition 7.4.10).

Proof. This is just a restatement of the definition of the element L(�) 2 T ⌦
EndR(I⇡[) = T⇡ ⌦ EndR(I⇡[) introduced in Proposition 7.4.10.

The following is now an elementary consequence of Proposition 7.4.10.
Again, recall that T = T⇡ = Tm⇡

. We say that an anti-holomorphic cuspidal
representation satisfies Hypotheses 7.3.2 and 7.3.3 if its complex conjugate (or
contragredient) does.

PROPOSITION 7.4.13 (Abstract p-adic L-functions of families). Let � = d�(x,
t) be a measure on X p⇥T such that, for each character � of X p,

R
X p

�(x) d�(x,
t) is a V-valued measure �� of type � satisfying Assumption 7.4.4. Fix a cuspidal
anti-holomorphic representation ⇡ satisfying Hypotheses 7.3.2 and 7.3.3. Then
there is an element L(�) 2 ⇤X p ⌦̂T ⌦ EndR(I⇡[) such that, for every R-valued
character � of X p, the image of L(�) under the map

� ⌦ Id : ⇤X p ⌦̂T ⌦ EndR(I⇡[) ! T ⌦ EndR(I⇡[)

given by contraction in the first factor, or equivalently integration against � with
respect to the first variable, is the element L(�� ) of Proposition 7.4.12.

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


E. Eischen, M. Harris, J. Li and C. Skinner 126

The following standard fact (see, for example, [Hid88, Lemma 3.3]) shows
that the specializations of Proposition 7.4.12 determine the abstract L-function
L(�):

LEMMA 7.4.14. The V-valued measure � = �� of type � and the abstract L-
function L(�) are completely determined by their integrals against elements of
the sets X (, r,OCp) for any fixed sufficiently regular  and all r .

We write
EndR(I⇡[) = Î⇡[ ⌦ I⇡[ ' Hom( Î⇡ ⌦ Î⇡[, R). (160)

Then for any ' ⌦ '[ 2 Î⇡ ⌦ Î⇡[ we have a tautological pairing

L(� ,�, r, ,' ⌦ '[) = [L(�� , , r),' ⌦ '[]loc 2 Tr, , (161)

where [•, •]loc is the tautological pairing

Hom( Î⇡ ⌦ Î⇡[, R) ⌦ Î⇡ ⌦ Î⇡[ ! R.

We reformulate Proposition 7.4.12 in terms of Equation (161).

PROPOSITION 7.4.15. Fix an embedding O⇡ ,! C extending the inclusion
E(⇡) ⇢ C, and let R be a p-adic ring containing O⇡ and satisfying the
conditions of Lemma 5.1.3. Let � be an admissible R-measure on X p ⇥ T as
in Section 5.2.2. Assume Hypotheses 7.3.2 and 7.3.3. Let ' ⌦ '[ 2 Î⇡ ⌦ Î⇡[

as above. Then there is a unique element L(�,' ⌦ '[) 2 ⇤X p,R ⌦̂T such that,
for any classical � : X p ! R⇥ and any � 2 X (, r, R) (with  sufficiently
regular), the image of L(�,' ⌦'[) under the map ⇤X p,R ⌦̂T ! R induced by
the character � ⌦ � equals � � L(� ,�, r, ,' ⌦ '[).

7.5. Classical pairings in families. The following is essentially obvious.
The notation h·, ·iSer is as in (132).

LEMMA 7.5.1. Let h 2 Sord
,V (Kr ,O), ' 2 Hd,ord

D (Kr ,O)[⇡ ], in the notation of
Section 6.6. Then the map

T ! O; A 7! hA(h),'i,Kr

takes A to �⇡ (A)hh,'i,Kr
.

Proof. We have

hA(h),'i,Kr
= hh, A[(')i,Kr

= �⇡[(A[)hh,'i,Kr
= �⇡ (A)hh,'i,Kr

.
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Note that h is not assumed to be an eigenform in Lemma 7.5.1. However,
the pairing with an eigenform for �⇡[ factors through the projection of h on
the (dual) �⇡ -eigenspace. In general, this projection can only be defined over
O[ 1p ]. Extending O if necessary to include O⇡ 0 for ⇡ 0 2 S(Kr , ,⇡

[), write
h =

P
⇡ 02S(Kr ,,⇡[) a⇡ 0h⇡ 0 where a⇡ 0 2 O[ 1p ] and h⇡ 0 is in the �⇡ 0-eigenspace for

T. Then under the hypotheses of the lemma,

hh,'i,Kr
= a⇡ hh⇡ ,'i,Kr

. (162)

where of course h⇡ 2 ⇡[.
The denominator of a⇡ is bounded by the congruence ideal C(⇡) = C(⇡[). In

what follows we are making use of Corollary 6.7.10.

LEMMA 7.5.2. Let ' 2 Hd,ord
D (Kr ,O)[⇡ ]. Then the linear functional

h 7! L'(h) := hh,'i,Kr

belongs to Ŝord
,V (Kr ,O)[⇡ ].Moreover, the restriction of L'(h) to Sord

,V (Kr ,O)[⇡ ]
takes values in the congruence ideal C(⇡) = C(⇡[) ⇢ O.

Proof. The claims follow from Lemmas 7.5.1 and 6.7.11, respectively.

The functional in the last lemma can be rewritten as an integral. Recall that Î⇡
(respectively Î⇡[) was identified with an O-lattice in ⇡ a-ord

p ⌦ ⇡ Kp

Sp , (respectively
⇡[,a-ord

p ⌦⇡
[,Kp

Sp ). Recall also that we have dropped the subscript ⇡ for the moment,
and so we are writing O in place of O⇡ . In order to facilitate comparison of the
p-adic and complex pairings, we let R be a finite local Z(p)[�⇡ ]-subalgebra of C
that admits an embedding as a dense subring of O, and let Î⇡[,R and Î⇡,R be free
R-modules given with isomorphisms

Î⇡[,R ⌦R O
⇠

�! Î⇡[; Î⇡,R ⌦R O
⇠

�! Î⇡ .

The following lemma is then just a restatement of (133).

LEMMA 7.5.3. In the notation of the previous lemma, let ' 2 Î⇡ . If we identify
h as above with an element of H 0(Ph(V ), Kh;A0(G) ⌦ W)

Kr and ' with an
element of Hd(Ph(�V ), Kh;A0(G) ⌦ WD )K

[
r , as in Equation (114), we can

rewrite

L'(h) =
1

Vol(I 0r,V )Vol(I 0r,�V )

Z

G(Q)ZG (R)\G(A)
[h(g),'(g)]k⌫(g)�a()k dg.

Lemmas 7.5.2 and 7.5.3 have variants incorporating the twist by a Hecke
character � , as in (4.1.6) and Section 6.7.5; we leave the statements to the reader.
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8. Local theory of ordinary forms

8.0. Parameters. Throughout this section, following the conventions of
Section 4.4.2, let � , �� , m, , and (r̃� , s̃� ) be associated to one another via:
� = k • km · �0 is an algebraic Hecke character of K (where m 2 Z and
�0,� (z) = z�a(�� ) z̄�b(�� ) for any archimedean place � ), �� denotes the component
of � at an archimedean place � , (r̃� , s̃� ) is a tuple of integers as in Inequalities
(95), and  is a highest weight defined in terms of m, �� , and (r̃� , s̃� ) as in
Equation (94).

8.1. p-adic and C1-differential operators. Let (,�) and (r̃ , s̃) be as in
Corollary 4.4.9 and Proposition 4.4.11. The differential operators and restrictions
in Parts (a) and (b) of the following proposition are those in [EFMV18,
Sections 6–7] (with the choice of a weight  and the differential operator ⇥

in the notation in [EFMV18] corresponding to the choice of a representation of
highest weight (r̃ , s̃) in the dth tensor product of the standard representation).
That the image is actually cuspidal follows from the description of the action of
the differential operators on q-expansions.

PROPOSITION 8.1.1. (a) For (r̃ , s̃) and � as in Section 8.0, and for any prime-
to-p level subgroup Kp, there is a differential operator

✓ d
� (r̃ , s̃) = ✓ d

� (p(r̃ , s̃)) : V� (G4, Kp,O) ! V (G4, Kp,O)

compatible with change of level subgroup, and with the following property:
For any level Kp, for any form f 2 M� (G4, Kp,O), and any ordinary CM
pair (J 0

0, h0) as in Section 3.2.4, we have the identity

R,J 0
0,h0 � resJ 0

0,h0 ��d� (r̃ , s̃)( f ) = resp,J 0
0,h0 �✓ d

� (r̃ , s̃) � R,G,X ( f )

in the notation of Proposition 3.2.5.

(b) Let (,�) be critical as in Corollary 4.4.9. Fix a level subgroup K4 ⇢
G4(A f ) and a subgroup K1 ⇥ K2 ⇢ G3(A f ) \ K4. The composition of
✓ d

� (r̃ , s̃) with the pullback res3 := (�Vp � ◆3)
⇤ defines an operator

✓(,�) : V� (G4, K
p
4 ,O) ! V(G1, K

p
1 ,O)⌦ V[(G2, K

p
2 ,O)⌦ � � det,

where the tensor product with � � det is defined by analogy with
Proposition 4.4.11.

(c) Let ✓(,�)cusp denote the restriction of ✓(,�) to V cusp
� (G4, K

p
4 ,O), and let

e denote the ordinary projector of (31) attached to the weight  , as in 6.6.6.
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Then the composition e �✓(,�)cusp coincides with the operator e ��d� (r̃ , s̃)
upon pullback to functions on G4(A) and restriction to G3(A) (with respect
to the maps (28) for G3 and G4):

e � ✓(,�)cusp = e � �d� (r̃ , s̃) : V
cusp
� (G4, K

p
4 ,O)

! S,V (K1) ⌦ S[,�V (K2) ⌦ � � det .

(d) Under the hypotheses of (a) and (b), there is a differential operator

✓ hol(,�) : V� (G4, Kp,O) ! V (G4, Kp,O)

whose composition with the pullback res3 coincides with the operator
Dhol(,�) of Proposition 4.4.11, upon pullback to functions on G4(A),
restriction to G3(A), and identification of ordinary modular forms with p-
adic modular forms via (28).

Proof. The operators from Part (a) were constructed in [EFMV18, Theorem
5.1.13]. The comparison at CM points follows similarly to [Kat78, Section
5.1] and is also in [Eis12, Section 10, especially Proposition 10.2]. Part (b)
follows from [EFMV18, Remark 6.2.7] (and was also present in an earlier
form in [Eis16, Definition 12]). Since the image of ✓(,�)cusp is contained in
V cusp

 (G1, K
p
1 ,O)⌦V cusp

[ (G2, K
p
2 ,O)⌦� �det, part (c) follows from the control

theorem (32).
Finally, part (d) follows from Eischen’s construction as well: it follows (by

induction on the size of ) from the last part of Corollary 4.4.9 that the
operator Dhol(,�) is obtained by pullback of the differential operator attached
to a polynomial Phol(,�) 2 ⌦�P(n)� . One lets ✓ hol(,�) be the differential
operator on p-adic modular forms attached to the same polynomial.

The following corollary is the p-adic version of the last part of Corollary 4.4.9.

COROLLARY 8.1.2. Under the hypotheses of the previous proposition, for all
† 6  there are differential operators ✓(, �) : V� (G4, Kp,O) ! V (G4, Kp,
O) such that

✓(,�) =
X

†6

res3 �✓(, †) � ✓ hol(†,�).

PROPOSITION 8.1.3. Let F 2 H 0(Sh(G4),L(�)).
Assume , (r̃� , s̃� ),m,�� are all as at the beginning of this section, and

let e be as above. Recall the holomorphic projection prhol from Section 4.4.7.
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Then
(e � ✓(,�))(F) = e � prhol � �(r̃� , s̃� )(F). (163)

Proof. By Corollary 8.1.2, the left-hand side equals
X

†6

e � res3 ✓(, †) � ✓ hol(†,�).

By Proposition 3.2.5, it thus suffices to show that, for every ordinary Shimura
datum (J 0

0, h0) as in the statement of the proposition:

(1) for † <  , e � res3 ✓(,  0) � ✓ hol(†,�)(F) = 0 after composition with
resp,J 0

0,h0 ;

(2) e � res3 ✓(, ) � ✓ hol(,�)(F) � e � prhol � �(r̃� , s̃� )(F) = 0 after
composition with resp,J 0

0,h0 .

Part (2) is a consequence of (c) of 8.1.1. We show that the expression in (1) is
arbitrarily divisible by p. More precisely,

LEMMA 8.1.4. For any † <  , the ordinary projector e = lim
�!N

U N !
p, converges

absolutely to 0 on S†(Kr ; R).

Proof. The point is that, for each w, j ,Uw, j, = | 0(tw, j)|�1
p Uw, j , with  0 defined

as in 2.6.11. Thus,

Up, =
Y

w, j

| 0,�1 · †,0(tw, j)|p ·Uw, j,† .

The condition † <  is equivalent to the condition that the p-adic valuation ofQ
w, j 

0,�1 · †,0(tw, j) is positive. Thus, Up, has p-adic norm strictly less than 1
on S†(Kr ; R), and it follows that e = lim

�!N
U N !

p, acts as 0 on S†(Kr ; R).

Part (1) above now follows from the fact that the ordinary projector commutes
with the differential operators.

8.2. Existence of the axiomatic Eisenstein measure. Let �unitary be a unitary
Hecke character. Let � = �unitary| · |

�k/2
K/Q . So � is a Hecke character of type A0.

Write � =
Q

w �w. We obtain a p-adically continuous OCp -valued character �̃
on X p as follows. Since � is of type A0, there are integers k, ⌫� 2 Z such that
for each element a 2 K⇥,

�1(a) =
Y

�2⌃

�� (a) =
Y

�2⌃

✓
1

� (a)

◆k✓
� (a)
� (a)

◆⌫�
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with � := �c. Let �̃1 : (K⌦Zp)
⇥ ! Q⇥

p be the p-adically continuous character
such that

�̃1(a) = inclp � �1(a)

for all a 2 K. So the restriction of �̃1 to (O ⌦ Zp)
⇥ is a O⇥

Cp
-valued character.

We define

�̃ : X p ! O
⇥
Cp

by �̃((aw)) = �̃1((aw)w|p)
Q

w-1 �w(aw). Define ⌫ = (⌫� )�2⌃ .
For each � 2 ⌃ , let n = a� + b� with a� , b� > 0 be a partition of n, and let

a� = n1,�+· · ·+nt (� ),� and b� = nt (� )+1,�+· · ·+nr(� ),� be partitions of a� and b� ,
respectively. Let a = (a� )�2⌃ and b = (b� )�2⌃ . Let  be a finite-order character
on TH (Zp). Let  be a dominant character as in Section 2.6.3, and define ⇢ and
⇢� as in (95), (97). We note that ⇢ and  contain the same information, relative to
the shift (1,�) which is imposed by the presence of � in the Eisenstein measure.
Let c =  · ⇢� . We choose f (� , c) to be a factorizable Siegel–Weil section

meeting the conditions of Definition 5.3.2; the specific local sections will be
as in Sections 4.2.1 (local choices for v /2 S), 4.2.2 (local choices for v 2 S),
and 4.3 (local choices for v | p), and 4.5 (local choices for archimedean places).
Note that the choices at p and 1 depend on the signature of the unitary group
G1. When ⇢ is trivial, the Eisenstein series associated to f (� , c) = f (� , ) is
holomorphic; in the notation of [Eis15], it is (a normalization of) the algebraic
automorphic form denoted Gk,⌫,�unitary, (which arises over O but can be viewed
over C by extending scalars) in [Eis14, Equation (32)].

REMARK 8.2.1. We use the notation Gk,⌫,�unitary, below in order to cite the
construction in [EFMV18]. However, this notation designates one of the
Eisenstein series introduced above. More precisely, the section f (� , ) is
the Siegel–Weil section associated to �unitary, k, ⌫, and  in [Eis14], and
the associated Eisenstein series Ef (� , )(•) is the one denoted Ek,⌫(•,� , , k

2 )
in [Eis15]. The Eisenstein series Ef (� , )(•) is normalized by a factor D(n, K , b,
p, k) defined in [Eis15, Proposition 13] in order to cancel transcendental factors.
Note that although we do not include (a, b) in the (already long) subscript for
the Eisenstein series, the choice of f (� , c) (and hence, the associated Eisenstein
series) depends on the choice of (a, b).

Like in Section 4.4.7, let r1,� > · · · > ra� ,� > ra�+1,� = 0, s1,� > · · · > sb� ,� >
sb�+1,� = 0 be descending sequences of integers. Let ⇢�

� be the corresponding
character on the torus TH , and let

r̃i,� = ri,� � ri+1,� , i = 1, . . . , a� ; s̃ j,� = r j,� � r j+1,� , j = 1, . . . , b� .
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Define ⇢� :=
Q

�2⌃ ⇢�
� and � :=

N
�2⌃ p(r̃� , s̃� ), with p(r̃� , s̃� ) defined as in

Equation (100) (and identified with a polynomial function on the tangent space
of the moduli space). So p(r̃� , s̃� ) is a homogeneous polynomial of degree d(� )
for some nonnegative integer d(� ).
Recall the C1 differential operators �d� (r̃ , s̃) from Section 4.4.10. These

operators can be realized algebraic geometrically in terms of the Gauss–Manin
connection and Kodaira–Spencer isomorphism, for example as in the main
constructions in [Kat78, Ch. II], [Eis12, Sections 6–9], [Eis16, Section 3],
and [EFMV18, Sections 3–6]. The constructions in those references each
build an algebraic differential operator D (which gets applied to automorphic
forms on G4) by composing the Gauss–Manin connection and Kodaira–Spencer
morphism. The operator �d� (r̃ , s̃) can be realized algebraic geometrically by
applying the operator D iteratively d times and then projecting onto the highest
weight vector corresponding to the choice of highest weights corresponding to
(� , (r̃ , s̃)) (after also projecting modulo the anti-holomorphic subspace H 0,1

of H 1
dR). Each of those references also describes an analogous construction

over the Igusa tower, but with H 0,1 replaced by the unit root splitting, which
yields a p-adic differential operator that we denote in the present paper by
✓ (,a,b). The operator ✓ (,a,b) acts on p-adic automorphic forms (over the
Igusa tower over the ordinary locus of the Shimura variety associated to G4)
and outputs p-adic automorphic forms of higher weight. In each case, the
operator is applied to an automorphic form on G4 and raises the weight of
the automorphic form so that the output takes values in the space generated
by the highest weight vector corresponding to the data (� , (r̃ , s̃)). It follows
from [Eis12, Section 10] (which extends [Kat78, Lemma 5.1.27] to unitary
groups) that ✓ (,a,b)( f ) and �d� (r̃ , s̃)( f ) (for any algebraic automorphic form
f ) agree at ordinary CM points, up to periods. See (163) for a more precise
statement.
From the p-adic q-expansion principle and the description of the q-expansion

coefficients given in [Eis14, Section 3], we obtain the following theorem (similar
to [EFMV18, Theorem 7.2.3]).

THEOREM 8.2.2 (The Eisenstein measure). Recall the notation of Equation (97).
There is a measure Eisa,b (dependent on a and b) on X p ⇥ TH (Zp) that takes
values in the space of p-adic modular forms on G4 and that satisfies

Z

X p⇥TH (Zp)

�̃ · ⇢�Eisa,b = ✓ (,a,b)(Gk,⌫,�unitary, ).

whenever (� , c =  · ⇢�) 2 Y class
H .
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REMARK 8.2.3. When a�b� = 0 for all � 2 ⌃ (that is in the definite case), the
measure in Theorem 8.2.2 is the Eisenstein measure from [Eis15, Theorem 20]
and [Eis14, Section 5].

COROLLARY 8.2.4. The measure dEisa,b, defined by
Z

X p⇥TH (Zp)

�̃ · ⇢� dEisa,b = res3 ✓ (,a,b)(Gk,⌫,�unitary, ).

is an axiomatic Eisenstein measure on values in V (K p
3 , R), with shift (1,�).

Proof. We need to compare the expression in Theorem 8.2.2 with the
specifications required in Definition 5.3.2. Bearing in mind the translation
mentioned in Remark 8.2.1, this comes down to comparing the action of
e � res3 ✓ (,a,b) with e � �Dhol(,�). But this follows from Proposition 8.1.3.

REMARK 8.2.5. The set Y class
H for the measure is determined by the conditions

in (110), together with the relationships between � , m, (ri,� )i , and (s j,� ) j given
in Equation (94) and Inequalities (95).

8.3. (Anti-) Ordinary representations and (anti-) ordinary vectors for G1.
For this section, let G = G1. For each prime w | p, let Gw = GLn(Kw). Recall
that by (9) and (10) there is an identification

G(Qp)
⇠

�! Q⇥
p ⇥

Y

w2⌃p

Gw. (164)

Let Bw ⇢ GLn(Kw) be the (nonstandard) Borel consisting of elements g =
�
A B
0 D

�

with A 2 GLaw(Kw) upper-triangular and D 2 GLbw(Kw) lower-triangular. Let
Tw ⇢ Bw be its diagonal subgroup and Bu

w ⇢ Bw its unipotent radical. Let I 0w,r ⇢
GLn(Ow) be the subgroup of elements g such that g mod pr =

�
A B
0 D

�
with A 2

GLaw(Ow/prOw) upper-triangular and D 2 GLbw(Ow/prOw) lower-triangular
(this is the mod pr Iwahori subgroup relative to the Borel Bw). Let Iw,r ⇢ I 0w,r be
the subgroup consisting of those g such that A and D are unipotent. Under the
identification (164) the subgroups Ir ⇢ I 0r of G(Zp) defined in Section 2.5 are
identified as

I 0r
⇠

�! Z⇥
p

Y

w2⌃p

I 0w,r and Ir
⇠

�! Z⇥
p

Y

w2⌃p

Iw,r . (165)

Let �w : Bw ! C be the modulus character: if t = diag(t1, . . . , tn) 2 Tw, then
�w(t) = |tn�1

1 · · · tbw�aw
aw t1�n

aw+1 · · · tbw�1�aw
n |p.
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8.3.1. Ordinary representations: local theory. Let ⇡ be a cuspidal
holomorphic representation of G(A) of weight type (, K ) as in Section 6.5.1
with  = (� )�2⌃K

, � 2 Za� , assumed to satisfy:

� + �c > n, 8� 2 ⌃K. (166)

Let norm = (norm,� ) with norm,� = � � b� .
Via the identification (164), the p-constituent ⇡p of ⇡ is identified with a

tensor product ⇡p
⇠= µp

N
w2⌃p

⇡w with µp a character of Q⇥
p and each ⇡w an

irreducible admissible representation of Gw.
Recall that the Hecke operators uw, j = |norm(tw, j)|�1

p Uw, j , w 2 ⌃p and
1 6 j 6 n, act on the spaces ⇡ Kr

f = ⇡ Ir
p ⌦ (

N
`6=p ⇡`)

Kp through an action on
the spaces ⇡ Ir

p : Uw, j acts on the latter spaces as the usual double coset operator
Ir t+w, j Ir , and, furthermore, the generalized eigenvalues of the uw, j are p-adically
integral (cf. Section 2.6.9; since m = 1 the subscript i has been dropped from
our notation, following our conventions). In particular, the ordinary projector
e = limm!1(

Q
w2⌃p

Qn
i=1 uw, j)

m! acts on each ⇡ Ir
p . From the identification

⇡p = µp
N

w2⌃p
⇡w and (165) we find that uw, j acts on ⇡ Ir

p =
N

w2⌃ ⇡
Iw,r
w via the

action of the Hecke operator uGL
w, j = |norm(tw, j)|�1

p UGL
w, j on ⇡

Iw,r
w , where UGL

w, j acts
as the double coset operator Iw,r tw, j Iw,r ; here, tw, j 2 Tw is the element defined
in Section 2.6.9. It follows that the generalized eigenvalues of the action of the
Hecke operators uGL

w, j are p-adically integral, and ew = limm!1(
Qn

j=1 u
GL
w, j)

m!

defines a projector on each ⇡
Iw,r
w .

Suppose that ⇡ is ordinary at p. Recall that this means ⇡ Ir
p 6= 0 if r � 0 and

that, for any such r , there is at least one vector 0 6= � 2 ⇡ Ir
p such that e · � = �.

We call such a � an ordinary vector for ⇡p. (But note that this notion depends a
priori on the character norm, which in turn depends on  and the signatures (a� ,
b� )�2⌃K

. It turns out that there is at most one norm with respect to which a given
⇡p can be ordinary, but in general the same ⇡p can appear as local components
for unitary groups with various signatures.) The existence of an ordinary vector is
equivalent to the existence of a � 2 ⇡ Ir

p , r � 0, that is a simultaneous eigenvector
for the Hecke operators uw, j and having the property that uw, j · � = cw, j� with
|cw, j |p = 1. It follows from the identification ⇡p = µp

N
w2⌃p

⇡w that ⇡p being
ordinary at p is equivalent to µp being unramified and each ⇡w being ordinary,
in the sense that there exists �w 2 ⇡

Iw,r
w , r � 0, such that ew · �w = �w; we call

such a �w an ordinary vector for ⇡w. The existence of an ordinary vector for ⇡w

is equivalent to:

(a) ⇡
Iw,r
w 6= 0 for all r � 0;

%�#�$�!��&$����'���������%��%%"$���(((�����#�����!#���!#��%�#�$���%%"$����!��!#������������"������	
�!( �!������#!���%%"$���(((�����#�����!#���!#���������#�$$������������
��! ������)�������%������	���$&����%�%!�%�������#������!#�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core


p-adic L-functions for unitary groups 135

(b) for each r as in (a) there exists 0 6= �w 2 ⇡
Iw,r
w such that �w is a simultaneous

eigenvector for the uGL
w, j , 1 6 j 6 n, and having the property that uGL

w, j ·�w =
cw, j�w with |cw, j |p = 1.

Note that if �w 2 ⇡w, w 2 ⌃p, are ordinary vectors and µp is unramified, then
� = ⌦w2⌃p�w 2 ⇡p is an ordinary vector for ⇡p.

LEMMA 8.3.2. Let w 2 ⌃p. Suppose ⇡w is an irreducible admissible
representation of Gw such that (a) and (b) above hold for a weight  satisfying
inequality (166).

(i) Up to multiplication by a scalar, there is a unique ordinary vector �ord
w 2

⇡
Iw,r
w ; �ord

w is necessarily independent of r � 0.

(ii) There exists a unique character ↵w : Tw ! C⇥ such that ⇡w ,! IndGw

Bw ↵w

is the unique irreducible subrepresentation and �ord
w is identified with the

unique simultaneous UGL
w, j -eigenvector, 1 6 j 6 n, with support containing

Bw Iw,r , for r � 0. (In particular, cw, j = |norm(tw, j)|�1
p ��1/2

w ↵w(tw, j).)

Proof. Our proof is inspired in part by the arguments in [Hid98, Sections 5]. Let
V be the space underlying the irreducible admissible representation ⇡w of Gw =
GLn(Kw), and let VBw be the Jacquet module of V with respect to the unipotent
radical Bu

w of the Borel Bw. Let N =
T

r Iw,r ; this is just Bu
w \GLn(Ow). For

each j = 1, . . . , n, let

t j =

(
diag(p1 j , 1n� j) j 6 aw,
diag(p1aw , 1n� j , p1 j�aw) j > aw.

We let the double coset Uj = Nt j N act on V N =
S

r V
Iw,r in the usual way: if

Nt j N =
F

i xi, j N then Uj · v =
P

i xi, j · v. Then Uj acts on the subspace V Ir

as UGL
w, j . By the same arguments explained in [Hid98, (5.3)], V N decomposes as

V N = V N
nil � V N

inv, where the Uj act nilpotently on V N
nil and are invertible on V N

inv.

Then, just as in [Hid98], the natural Bw-invariant projection V
v 7!v̄⇣ VBw induces

an isomorphism
V N
inv

⇠
�! VBv , v 7! v̄, (167)

that is equivariant for the action of the Uj .
Let � 2 V Ir be an ordinary vector for some r : � is an eigenvector for each

u j = |norm(t j)|�1
p U j with eigenvalue c j such that |c j |p = 1. In particular, � 2

V N
inv. As Uj acts on VBw via �w(t j)�1t j , it then follows from (167) that there must

be a Bw-quotient
◆ : VBw ⇣ C(�)
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with � : Tw
⇠

�! Bw/Bu
w ! C is a character such that �(t j)= |norm(t j)|p�(t j)c j

for all j = 1, . . . , n. Let ↵ = ���1/2 and let I (↵) = IndGw

Bw (↵) be the unitary
induction of ↵ to a representation of Gw. By [Cas95, Theorem 3.2.4],

HomGw
(V, I (↵)) ⇠

�! HomB(VB,C(�)), ' 7! (v̄ 7! '(v)(1)),

is an isomorphism, from which we conclude that there exists a nonzero Gw-
homomorphism V ,! I (↵), v 7! fv (which is necessarily an injection since ⇡w

is irreducible) such that
◆(v̄) = fv(1). (168)

By the characterization of �, � = |norm|�1
p ��1

w � = |norm|�1
p ��1/2

w ↵ is a
continuous character Tw ! C⇥ such that each �(t j) is a p-adic unit. From the
definition of the t j it then follows easily that �(t) is a p-adic unit for all t 2 Tw.
Let W be the Weyl group of Tw in Gw. For x 2 W , let �x = |norm|�1

p ��1/2
w ↵x ,

where ↵x(t) = ↵(xtx�1). We claim that the values of �x are all p-adic units if
and only if x = 1. If the values of �x are all p-adic units, then

�x/�
x(t) = |norm(xtx�1t�1)|�1

p �w(xtx�1t�1)�1/2

is a p-adic unit for all t 2 Tw. As �w is the composition of | · |p with an algebraic
character of Tw, it follows that the above values must all be 1. That is, the
character ✓ = |norm|p��1/2

w satisfies ✓ x = ✓ . Recall that if  is identified with
a dominant tuple (0, (� )�2⌃K

) as in (16) then

norm(diag(t1, . . . , tn)) =
Y

�
p�=pw

awY

i=1

� (ti)�,i�bw
bwY

j=1

� (taw+ j)
��c, j+aw .

In particular, letting

mi =

(P
�,p�=pw

(�,i � bw) i 6 aw,
�

P
�,p�=pw

(�c,i � aw) i > aw,

we have

|norm(diag(t1, . . . , tn))|p =
nY

i=1

|ti |mi
p .

It follows that

✓(diag(t1, . . . , tn)) = |tm1+
n�1
2

1 · · · tmaw+ bw�aw
2

aw tmaw+1+
1�n
2

aw+1 · · · tmn+
aw�2�bw

2
n |�1

p .

From the dominance of  and the inequality (166) it follows that

m1 > m2 > · · · > maw > mn > mn�1 > · · · > maw+1,
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and so

m1 +
n � 1
2

> · · · > maw +
bw � aw

2
> mn

+
bw � 2 � aw

2
> · · · > maw+1 +

1 � n
2

.

That is, ✓ is a regular character of Tw, and therefore ✓ x = ✓ if and only if x = 1.
This completes that proof that the values of �x are all p-adic units if and only
x = 1.
As �x 6= � for all x 6= 1, the characters ↵x , x 2 W , are all distinct, and hence

the Jacquet module I (↵)Bw of I (↵) is a semisimple Bw-module and isomorphic
to the direct sum

L
x2W C(↵x�1/2) (cf. [Hid98, Proposition 5.4]). The inclusion

V ,! I (↵), v 7! fv, induces a Bw-inclusion

VBw ,! I (↵)Bw ⇠=
M

x2W

C(↵x�1/2w ). (169)

It then follows from (167) that V N
inv is a sum of one-dimensional simultaneous

eigenspaces for the Uj that are in one-to-one correspondence with those
characters ↵x��1/2, x 2 W , that appear in VB via (169); the eigenvalue of
u j = |norm(t j)|�1

p U j on the eigenspace corresponding to ↵x�1/2 is �x(t j). As
the values of �x are not all p-adic units if x 6= 1, it follows that the space of
ordinary vectors in V is one-dimensional; this proves part (i). It further follows
that the ordinary eigenspace must project nontrivially toC(�) = C(↵�1/2) via the
composition of (167) with ◆, and that all other eigenspaces map to 0 under this
composition. As this composition is just v 7! fv(1) by (168), part (ii) follows
easily.

COROLLARY 8.3.3. Suppose  satisfies (166) and ⇡p is ordinary. Up to
multiplication by a scalar, there is a unique ordinary vector �ord 2 ⇡ Ir

p for
r � 0; �ord is necessarily independent of r . Furthermore, under the identification
⇡p = µp

N
w2⌃p

⇡w, �ord =
N

w2⌃p
�ord
w , with �ord

w as in Lemma 8.3.2.

The following lemma will aid in the computation of certain local zeta integrals
involving ordinary vectors.

LEMMA 8.3.4. Let w, ⇡w, and  be as in Lemma 8.3.2. Let ⇡_
w be the

contragredient of ⇡w and h·, ·iw : ⇡w⇥⇡_
w ! C the nondegenerate Gw-invariant

pairing (unique up to scalar multiple).

(i) Let ↵w be as in Lemma 8.3.2(ii). Then ⇡_
w is isomorphic to the unique

irreducible quotient of IndGw

Bw ↵�1
w : IndGw

Bw ↵�1
w ⇣ ⇡_

w .
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(ii) For r � 0, let �_
w,r 2 ⇡_

w be the image of the vector in IndGw

Bw ↵�1
w that is

supported on Bw Ir . Then c(⇡w, r) := h�ord
w ,�_

w,r iw is nonzero and depends
only on r.

(iii) Let 0 6= � 2 ⇡ Ir
w with e · � = c(�)�ord

w . Then

h�,�_
w,r iw = c(�)h�ord

w ,�_
w,r iw.

Proof. Part (i) follows from the identification of IndGw

Bw ↵�1
w as the contragredient

of IndGw

Bw ↵w (cf. [Cas95, Proposition 3.1.2]). The pairing h·, ·i : IndGw

Bw ↵w ⇥
IndGw

Bw ↵�1
w ! C corresponding to this identification is just integration over

GLn(Ow) ⇢ Gw:

h','0i =
Z

GLn(Ow)

'(k)'0(k) dk, ' 2 IndGw

Bw ↵w,'
0 2 IndGw

Bw ↵�1
w ,

(cf. [Cas95, Proposition 3.1.3]). For part (ii), let 'ord 2 IndGw

Bw ↵w correspond to
�ord
w as in Lemma 8.3.2(ii) and let '_

r 2 IndGw

Bw ↵�1
w be the function supported on

Bw Ir . Then

h�ord
w ,�_

w,r iw =
Z

GLn(Ow)

'ord(k)'_
r (k) dk.

As Bw Ir \ GLn(Ow) = I 0r , and since for k = tk 0 2 I 0r = Tw(Ow)Ir we have
'ord(k)'_(k) = ↵w(t)↵�1

w (t) = 1, it then follows that

c(⇡w, r) := h�ord
w ,�_

w,r iw =
Z

I 0w

dk = vol(I 0r ) 6= 0.

This proves part (ii).
For part (iii), write � as a sum of simultaneous generalized UGL

w, j -eigenvectors:

� = c(�)�ord
w +

mX

i=1

�i , e · �i = 0.

Let ' (respectively 'ord, 'i ) be the function in IndGw

Bw ↵w that corresponds to �
(respectively �ord

w , �i ) as in Lemma 8.3.2(ii). Then, for r � 0, 'i |I 0r = 0, (by the
uniqueness property in Lemma 8.3.2(ii)) and so

h�,�_
w,r iw =

Z

GLn(Ow)

'(k)'_
r (k) dk =

Z

I 0r

'(k)'_
r (k) dk

= c(�)
Z

I 0r

'ord(k)'_
r (k) = c(�)h�ord

w ,�_
w,r iw.
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8.3.5. Anti-ordinary representations: local theory. Let ⇡ be an anti-
holomorphic representation of G(A) of type (, K ) as in 6.5.1 with  satisfying
the inequality (166). This is the case if and only if ⇡[ is a cuspidal holomorphic
representation of type (, K ) as considered in the preceding section.
For each r > 0 the Hecke operators u�

w, j = |norm(tw, j)|pU�
w, j , w 2 ⌃p and

1 6 j 6 n, act on the space ⇡ Kr
f = ⇡ Ir

p ⌦ (
N

`6=p ⇡`)
Kp through an action

on the space ⇡ Ir
p : U

�
w, j acts on ⇡ Ir

p as the usual double coset operator Ir t�w, j Ir .
Furthermore, the generalized eigenvalues of the u�

w, j are p-adically integral. In
particular, the anti-ordinary projector e� = limm!1(

Q
w2⌃p

Qn
i=1 u

�
w, j)

m! acts on
⇡ Ir

p . From the identification ⇡p = µp
N

w2⌃p
⇡w (via the isomorphism (164)) we

find that u�
w, j acts on ⇡ Ir

p =
N

w2⌃p
⇡

Iw,r
w via the action of the Hecke operator

uGL,�
w, j = |norm(tw, j)|�1

p UGL,�
w, j , where UGL,�

w, j acts as the double coset operator
Iw,r t�1

w, j Iw,r ; here tw, j 2 Tw is the element defined in Section 2.6.9. It follows
that the generalized eigenvalues of the action of the Hecke operators uGL,�

w, j are
p-adically integral and e�

w = limm!1(
Qn

j=1 u
GL,�
w, j )m! defines a projector on ⇡ Ir

w .
We say that ⇡ is anti-ordinary at p of level r if ⇡ Ir

p 6= 0 and there exists
0 6= � 2 ⇡ Ir

p such that e� ·� = �. We say that such a � is an anti-ordinary vector
for ⇡p of level r , with respect to Ir . Similarly, defining I [

r = I †r , where the latter
is as in Section 6.5.3, we can speak of anti-ordinary vectors for ⇡p of level r ,
with respect to I [

r . Under the identification ⇡p = µp
N

w2⌃p
⇡w, the existence of

an anti-ordinary vector of level r in ⇡ is equivalent to µp being unramified and,
for each w 2 ⌃p, there existing 0 6= �w 2 ⇡

Iw,r
w 6= 0 such that e�

w · �w = �w; we
call such a �w an anti-ordinary vector for ⇡w of level r .

LEMMA 8.3.6. Let w 2 ⌃p and ⇡w be a constituent of ⇡p as above.

(i) The representation ⇡w is anti-ordinary of some level r if and only if ⇡_
w is

ordinary, in which case ⇡w is anti-ordinary of all levels r � 0.

(ii) If ⇡w is anti-ordinary of level r , then there exists a unique (up to
nonzero scalar multiple) anti-ordinary vector �a-ord

w,r 2 ⇡
Iw,r
w of level r;

it is characterized by h�a-ord
w,r ,�_,ord

w iw 6= 0 and h�a-ord
w,r ,�iw = 0 for all

� 2 ⇡
Iw,r
w belonging to a generalized eigenspace of some uGL,�

w, j with nonunit
eigenvalue.

Proof. Suppose ⇡w is anti-ordinary of some level r . Then ⇡
Iw,r
w 6= 0 and there

exists a simultaneous eigenvector �a-ord
w,r 2 ⇡

Iw,r
w for the uGL,�

w, j with p-adic unit
eigenvalues a( j, r). Let h·, ·iw : ⇡w ⇥ ⇡_

w ! C be the Gw-equivariant pairing.
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Then we have

a( j, r)h�a-ord
w,r ,�iw = huGL,�

w, j · �a-ord
w,r ,�iw = h�a-ord

w,r , uGL
w, j · �iw (170)

for all � 2 ⇡
_,Iw,r
w . It follows that the action of each uGL

w, j on ⇡
_,Iw,r
w has an

eigenspace with eigenvalue a( j, r) (which is a p-adic unit). To see that there
exists a simultaneous such eigenspace we use the commutativity of the uGL

w, js:
Let Vj�1 ⇢ ⇡

_,Iw,r
w be a maximal subspace that is a simultaneous eigenspace for

uGL
w,1, . . . , u

GL
w, j�1 with respective eigenvalues a(1, r), . . . , a( j�1, r). Then by the

commutativity of the uGL
w, js, the identity (170) holds for all � 2 Vj�1. In particular,

there is a nonzero (maximal) subspace of Vj ⇢ Vj�1 which is an eigenspace for
uGL
w, j with eigenvalue a( j, r). It follows from induction on j that there exists a

nonzero simultaneous uGL
w, j -eigenvector � 2 ⇡

_,Iw,r
w , j = 1, . . . , n, with p-adic

unit eigenvalues a( j, r). That is, ⇡_
w is ordinary.

Conversely, suppose that ⇡_
w is ordinary, and let �_,ord

w 2 ⇡_
w be an ordinary

vector with uGL
w, j - eigenvalue c( j) (which is a p-adic unit). Then for r � 0 we

have
c( j)h�,�_,ord

w iw = h�, uGL
w, j · �

_,ord
w iw = huGL,�

w, j �,�_,ord
w iw (171)

for all � 2 ⇡
Iw,r
w . It follows from the nondegeneracy of h·, ·iw that there exists

a uGL,�
w, j -eigenvector � j,r 2 ⇡

Iw,r
w with eigenvalue c( j). Using (171) and the

commutativity of the uGL,�
w, j we find, as in the preceding proof of the ordinarity of

⇡_
w , that there exists a nonzero simultaneous uGL,�

w, j -eigenvector � 2 ⇡
Iw,r
w , j = 1,

. . . , n, with p-adic unit eigenvalues c( j). That is, ⇡w is anti-ordinary of level r
for all r � 0.
Suppose now that ⇡w is anti-ordinary of level r , and let �a-ord

w,r 2 ⇡
Iw,r
w be an anti-

ordinary vector of level r . As shown above, ⇡_
w is ordinary and �_,ord

w 2 ⇡
_,Iw,r
w .

We note that
⇡_,Iw,r
w = C�_,ord

w � V1 � · · · � Vt

with each Vi a simultaneous generalized uGL
w, j -eigenspace with at least one of the

(generalized) eigenvalues not a p-adic unit; this follows from the uniqueness of
the ordinary vector (see Lemma 8.3.2(i)). Since (170) holds for all � 2 Vi it
follows that h�a-ord

w,r , Vi iw = 0. This proves that �a-ord
w,r 2 ⇡

Iw,r
w is characterized (up

to nonzero scalar multiple) as stated in part (ii). The uniqueness also follows.

Using this we can deduce an analogue of Lemma 8.3.2(ii):

LEMMA 8.3.7. Let w 2 ⌃p and ⇡w be a constituent of ⇡p as above. Suppose ⇡w

is anti-ordinary. Then there exists a unique character �w : Tw ! C⇥ such that
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IndGw

Bw �w ⇣ ⇡w is the unique irreducible quotient and the anti-ordinary vector
�a-ord
w,r 2 ⇡

Iw,r
w of level r is (up to nonzero scalar multiple) the image of the vector

in IndGw

Bw �w with support Bw Iw,r . In particular, the �a-ord
w,r , r � 0, can be chosen

to satisfy
X

�2Iw,r /(I 0w,r 0 \Iw,r )

⇡w(� )�
a-ord
w,r 0 = �a-ord

w,r , r 0 > r.

Proof. Since ⇡w is anti-ordinary, it follows from Lemma 8.3.6(i) that ⇡_
w

is ordinary. Let ↵w be the unique character of Bw associated with ⇡_
w

as in Lemma 8.3.2(ii). Let �w = ↵�1
w . As ⇡_

w is the unique irreducible
subrepresentation of IndGw

Bw ↵w, ⇡w is the unique irreducible quotient of IndGw

Bw �w.
Furthermore, it follows from Lemmas 8.3.2(ii) and 8.3.4(ii–iii) that the image
of the vector in IndGw

Bw �w that is supported on Bw Iw,r satisfies the conditions that
characterize �a-ord

w,r in Lemma 8.3.6(ii). The uniqueness of �w easily follows from
the uniqueness of ↵w and Lemma 8.3.4.

COROLLARY 8.3.8. Suppose  satisfies Inequality (166). Then ⇡p is anti-
ordinary if and only if ⇡[

p is ordinary, and up to multiplication by a scalar,
there is a unique anti-ordinary vector �a-ord

r 2 ⇡
Iw,r
p of level r for each r � 0.

Furthermore, under the identification ⇡p = µp
N

w2⌃p
⇡w, �a-ord

r =
N

w2⌃p
�a-ord
w,r ,

with �a-ord
w,r as in Lemma 8.3.7.

REMARK 8.3.9. The desired relation between the �a-ord
w,r for varying r can be

made explicit by normalizing �a-ord
w,r to be the image of the vector in IndGw

Bw �w

with support Bw Iw,r and value at 1 equal to 1.

REMARK 8.3.10. The description of the anti-ordinary vector �a-ord
w,r 2 ⇡w

provided by Lemma 8.4.2 shows that for r sufficiently large, �w = �a-ord
w,r 2 ⇡w

satisfies the conditions (64) and (70) with Rw = Bw (and ni,w = 1 for all i). In
particular, �a-ord

w,r 2 ⇡w is a suitable ‘test vector’ for the calculations in 4.3.6.

8.3.11. The Newton polygon. Let ⇡ be a holomorphic or anti-holomorphic
cuspidal automorphic representation of G(A), and let ⇡p = µp

N
w2⌃p

⇡w be
the identification corresponding to (164). We assume that

each ⇡w is an irreducible subquotient of IndGw

Bw �w (172)

for some character �w : T ! C⇥. We view �w as n-tuple �w = (�w,1, . . . ,
�w,n) of characters of K⇥

w , defined by �w(diag(t1, . . . , tn)) =
Qn

i=1 �w,i(ti); the
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characters �w,i are uniquely determined up to order. We define the total Hecke
polynomial of ⇡ at w to be

Hw(T ) =
nY

i=1

(1 � ↵w,i($w)T )(1 � ↵�1
w,i($w)T ). (173)

The Newton polygon Newt(⇡, w) of ⇡ at w is the Newton polygon of Hw(T ).
Note that

Newt(⇡, w) = Newt(⇡[, w).

Let ⌃w = {� 2 ⌃K | p� = pw}. Let

⇡⌃w
=

O

�2⌃w

⇡� =
O

�2⌃w

Dc(⌧� )

in the notation of (90). Define the Hodge polygon Hodge(⇡, w) to be the polygon
in the right half-plane with vertices (i,

P
�2⌃w

pi,� ), where (pi,� , qi,� ) are the
pairs introduced in Section 4.4.12 for Dc(⌧� ).

PROPOSITION 8.3.12. Suppose ⇡ is (anti-)holomorphic and (anti-)ordinary.
Then Newt(⇡w) and Hodge(⇡w) meet at the midpoint (n,

P
�2⌃w

pi,� ).

In motivic terms, this says that the motive obtained by restriction of scalars to
Q of the motive attached to ⇧ satisfies the Panchishkin condition, see [Pan94].
The proof is an elementary calculation and is omitted; it will not be used in what
follows. Details will be provided in a future article, when the results obtained
here are related to standard conjectures on p-adic L-functions.

8.4. (Anti-) Ordinary representations and (anti-) ordinary vectors for G2.
If the group G1 in Section 8.3 is replaced with G2, then the analysis of ordinary
and anti-ordinary representations and vectors carries over with only a few
changes. The most significant of these is that under the identification (164)
the Borel Bw and the groups I 0w,r and Iw,r all get replaced by their transposes
tBw, tI 0w,r , and tIw,r , respectively (more precisely, Bw should be replaced by the
opposite parabolic, which is just the transpose in this case, and similarly for I 0w,r
and Iw,r ). However, in order to compare with the test vectors in Section 4.3.3
and subsequent calculations, we want vectors induced from Bw and not tBw =
Bop
w . These are obtained by composing with the standard intertwining operators

between IndGw

Bop
w
and IndGw

Bw .
Suppose ⇡ is a cuspidal holomorphic representation of G1(A) of weight

type (, K ) as in Section 8.3.1. Let ⇡[ be as in Section 6.5.3. In particular,
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⇡[ = ⇡_ ⌦ k⌫ka(). As a representation of G2(A), ⇡[ is cuspidal holomorphic
of weight type ([, K [). (However, as a representation of G1(A) it is anti-
holomorphic of this weight type!)

8.4.1. Ordinary representations II: local theory. Suppose that ⇡ is ordinary at
p. Then ⇡[ is also ordinary at p (but with all the changes of conventions that
come from replacing G1 with G2; in particular, the role of the UGL

w, j operator is
now played by U [,GL

w, j = tIw, j t�1
w, j

tIw, j ). Let

⇡[
p = µ[

p

O

w2⌃p

⇡[
w

be the decomposition of ⇡[
p with respect to the identification (164). Then ⇡[

w =
⇡_
w and µ[

p = µ�1
p |⌫|a()p .

We have the following analogues of Lemma 8.3.2 and Corollary 8.3.3.

LEMMA 8.4.2. Let w 2 ⌃p. Let r be so large that ⇡[,tIw,r
w 6= 0 (equiv, ⇡ Iw,r

w 6= 0).

(i) Up to multiplication by a scalar, there is a unique ordinary vector �[,ord
w 2

⇡
[,tIw,r
w ; �[,ord

w is necessarily independent of r � 0.

(ii) There exists a unique character ↵[
w : Tw ! C⇥ such that IndGw

Bw ↵[
w ⇣ ⇡[

w is
the unique irreducible quotient and �[,ord

w is identified with the image of the
simultaneous U [,GL

w, j -eigenvector, 1 6 j 6 n, with support Bw
tIw,r , for r � 0.

(In particular, the u[,GL
w, j -eigenvalue is c

[
w, j = cw, j .) Furthermore, if ↵w is the

character as in Lemma 8.3.2(ii), then ↵[
w = ↵�1

w .

Proof. The map IndGw

Bw ↵ ! IndGw
tBw↵�1, �(g) 7! �_(g) = �(tg�1) realizes ⇡[

w =

⇡_ as the image of ⇡w and hence a subrepresentation of IndGw
tBw↵�1

w . As �_ 2 ⇡[
w

is ordinary if and only if � 2 ⇡w is, part (i) follows immediately, and �[,ord
w =

(�ord
w )_. Part (ii) follows from noting that ⇡[ is then the image of the standard

intertwining operator IndGw

Bw ↵�1
w ! IndGw

Bop
w
↵�1
w . The determination of the support

of the eigenvector in IndGw

Bw ↵�1
w is an easy computation.

COROLLARY 8.4.3. Up to multiplication by a scalar, there is a unique
ordinary vector �[,ord 2 ⇡[,tIr

p for r � 0; �[,ord is necessarily independent of r .
Furthermore, under the identification ⇡[

p = µ[
p
N

w2⌃p
⇡[
w, �

[,ord =
N

w2⌃p
�[,ord
w ,

with �[,ord
w as in Lemma 8.4.2.
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8.4.4. Anti-ordinary representations II: local theory. Suppose that ⇡ is anti-
ordinary at p. Then ⇡[ is also anti-ordinary at p (but again with all the changes
of conventions that come from replacing G1 with G2; in particular, the role of
the UGL,�

w, j operator is now played by U [,GL,�
w, j = tIw, j tw, j

tIw, j ).
As in the ordinary case, we have the following analogues of Lemma 8.3.7 and

Corollary 8.3.8:

LEMMA 8.4.5. Let w 2 ⌃p. Suppose ⇡[
w is anti-ordinary with respect to tIw,r

(equivalently, ⇡w is anti-ordinary with respect to the Iw,r ). There exists a unique
character �[

w : Tw ! C⇥ such that ⇡[
w ,! IndGw

Bw �[
w is the unique irreducible

subrepresentation and the anti-ordinary vector �[,a-ord
w,r 2 ⇡

[,tIw,r
w of level r is

(up to nonzero scalar multiple) the unique simultaneous U [,GL,�
w, j -eigenvector in

IndGw

Bw �[
w with support containing Bw

tIw,r . In particular, the �[,a-ord
w,r , r � 0, can

be chosen to satisfy

X

�2tIw,r /(tI 0w,r 0 \
tIw,r )

⇡[
w(� )�

[,a-ord
w,r 0 = �[,a-ord

w,r , r 0 > r.

Furthermore, if �w is as in Lemma 8.3.7(ii), then �[
w = ��1

w .

Proof. Just as for the ordinary case in the proof of Lemma 8.3.7, �[,a-ord
w,r =

(�a-ord
w,r )_ is anti-ordinary. Furthermore, it is identified (up to nonzero scalar

multiple) with the image under the IndGw

Bop
w
↵�1
w ! IndGw

Bw ↵�1
w of the function

�0
r 2 IndGw

Bop
w
↵�1
w that is supported on Bop

w
tIw,r and takes the value 1 on 1. If �[,a-ord

w,r is
normalized to be equal to the image of �0

r , then �[,a-ord
w,r satisfies the trace relation

(since �0
r does).

COROLLARY 8.4.6. Let I [
r = I †r . There is a unique anti-ordinary vector �[,a-ord

r 2

⇡[,I [
r

p of level r for each r � 0. Furthermore, under the identification ⇡[
p =

µ[
p
N

w2⌃p
⇡[
w, �

[,a-ord
�r =

N
w2⌃p

�[,a-ord
w,r , with �[,a-ord

w,r as in Lemma 8.4.5.

REMARK 8.4.7. Under the normalization in the proof of Lemma 8.4.5, �[,a-ord
w,r is

identified with a function in IndGw

Bw �[
w whose value on 1 is Vol(tI 0w,r ).

REMARK 8.4.8. The description of the anti-ordinary vector �[,a-ord
w,r 2 ⇡[

w

provided by Lemma 8.4.2 shows that for r sufficiently large, �̃w = �[,a-ord
w,r 2 ⇡[

w

satisfies the conditions (68) with Rw = Bw (and ni,w = 1 for all i). In particular,
�[,a-ord
w,r 2 ⇡w is also a suitable ‘test vector’ for the calculations in 4.3.6.
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The next lemma will be a crucial ingredient in our interpretation of the our
local zeta integral formulas. Recall that h·, ·iw is the canonical pairing on ⇡w⇥⇡[

w

(using ⇡[ = ⇡_).
We continue with the hypotheses of Lemma 8.4.5, namely that ⇡[

w is anti-
ordinary with respect to tIw,r and, equivalently, ⇡w is anti-ordinary with respect
to the Iw,r . Note that this implies that ⇡w = (⇡[

w)
_ is ordinary with respect to the

Borel tBw and ⇡[
w = ⇡_

w is ordinary with respect to the Borel Bw. We will write
�[,ord

⇡w
2 ⇡

tIw,r
w and �ord

⇡
[
w

2 ⇡
[,Iw,r
w for these ordinary vectors: the first is the vector

as in Lemma 8.4.2 but with ⇡[
w replaced with (⇡[

w)
_ = ⇡w, and the second is the

vector as in Lemma 8.3.2 but with ⇡w replaced with ⇡_
w = ⇡[

w. We assume that
�[,ord

⇡w
takes the value 1 at 1 and that �ord

⇡
[
w
takes the value Vol(I 0w,r

tI 0w,r ) (which is
independent of r ) at 1. We assume that the anti-ordinary vectors are normalized
as in Remarks 8.3.9 and 8.4.7.

LEMMA 8.4.9. With the preceding conventions,

h�a-ord
w,r ,�[,a-ord

w,r iw
Vol(I 0w,r \ tI 0w,r )

=
h�[,ord

⇡w
,�[,a-ord

w,r iw
Vol(tI 0w,r )

=
h�a-ord

w,r ,�ord
⇡

[
w
iw

Vol(I 0w,r )
.

In particular, the left-hand side is independent of r .

Proof. We can identify h·, ·iw with the pairing induced by IndGw

Bw (�w) ⇥
IndGw

Bw (�w)
�1 given by (','0) 7!

R
GLn(Ow)

'(k)'0(k) dk. The lemma is then
a straightforward calculation: with this normalization of the pairing, each ratio
equals Vol(I 0w,r

tI 0w,r ) (which is independent of r ).

8.5. Global consequences of the local theory. Let ⇡ be an anti-ordinary
cuspidal anti-holomorphic representation ⇡ of G1 of weight type (, Kr ), Kr =
Kp Ir . Let ⇡[ be as in Section 6.5.3. Viewed as a representation of G2, ⇡[ is
also an anti-ordinary cuspidal anti-holomorphic representation of weight type
([, K [

r ), K [
r = (Kp)†tIr . But viewed as a representation of G1, ⇡[ is an ordinary

holomorphic representation.
Suppose ⇡ satisfies the Gorenstein, Minimality, and Global Multiplicity One

Hypotheses of Section 7.1. Let S be the set of finite primes, not dividing p, at
which Kp is not hyperspecial maximal. We summarize the implications of the
local theory for the identification of automorphic forms in ⇡ . Let I⇡ and Î⇡ be
as in Section 7.3.4. We say that the anti-holomorphic cuspidal representation ⇡ 0

of G1 is in the family determined by ⇡ if there is a nontrivial character �⇡ 0 of
the Hecke algebra T = T⇡ defining the action of the unramified Hecke operators
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on ⇡ 0. Any such ⇡ 0 is assumed to be given with a factorization (4). The factors
⇡ 0
w, for w | p, are all (tempered) subquotients of principal series representations.
In what follows, the Borel subalgebras b+� are chosen at archimedean places �

as in Section 4.4.1. The Minimality Hypothesis allows us to choose vS uniformly
for ⇡ 0 in the following proposition.

PROPOSITION 8.5.1. Fix an element vS 2 Î⇡ . Let ⇡ 0 be any anti-holomorphic
representation, of type ( 0, Kr 0), in the family determined by ⇡ . Let ' 0,� denote
a lowest weight vector in the anti-holomorphic subspace of ⇡ 0

1, as in (50). For
a finite prime v /2 S [ ⌃p, let '0

v be a fixed generator of the spherical subspace
of ⇡ 0

v and let '
0,[
v be the dual generator of the spherical subspace of ⇡ 0,[

v . Assume
 satisfies (166). Then:

(1) For r 0 � 0, there is, up to scalar multiple, a unique anti-ordinary anti-
holomorphic vector 'r 0(vS,⇡

0) 2 (⇡ 0)Kr 0 with factorization (4) given by

f ac⇡ 0,[('r 0(vS,⇡
0)) = ' 0,� ⌦

O

v /2S[⌃p

'0
v ⌦

O

w|p

�a�ord
w,r 0 ⌦ vS.

(2) As r 0 varies, the 'r 0
(vS,⇡

0) 2 ⇡ 0 can be chosen so that, if r 00 > r 0 � 0, then

#(I 0r 0/Ir 0)

#(I 0r 00/Ir 00)

X

�2Ir 0 /Ir 00

� ·'r 00
(vS,⇡

0) =
X

�2Ir 0 /(I
0
r 00 \Ir 0 )

� ·'r 00
(vS,⇡

0) = 'r 0
(vS,⇡

0).

Proof. This follows directly from the results in the previous sections, in
particular Lemmas 8.3.7 and 8.3.2.

REMARK 8.5.2. To ensure property (2) we adopt the normalization for �a-ord
w,r 00

described in Remark 8.3.9.

Similarly, from the results in Section 8.4 we deduce that after fixing a v
[
S 2

I⇡ = Î⇡[ and letting '( 0)[,� denote a lowest weight vector in the anti-holomorphic
subspace of (⇡ 0)[1, there is, up to scalar multiple, a unique anti-ordinary
anti-holomorphic vector 'r 0(v

[
S, (⇡

0)[) 2 (⇡ 0)[,K
[

r 0 satisfying the analogues of
properties (1) and (2).
For the most general statement, we introduce a twisting character � as in

(4.1.6) and Section 6.7.5. In the following Lemma, the module Hd,ord
[ (K [

r 0, 
0,�1,

R)� and the period Q[⇡ 0,� ] are as defined in Section 6.7.
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LEMMA 8.5.3. Let � be a Hecke character of type A0. The ratio

h'r 0(vS,⇡
0),'r 0(v

[
S, (⇡

0)[)� i⇡ 0,�

Vol(I 0r 0,V \ I 0r 0,�V )

is independent of r 0. If 'r 0(vS,⇡
0) 2 Hd,ord

 (Kr 0, 0, R) and 'r 0(v
[
S,⇡

0) 2
Hd,ord

[ (K [
r 0, 

0,�1, R)� , then its value is in R · Q[⇡ 0,� ], and for appropriate
choices of 'r 0(vS,⇡

0) and 'r 0(v
[
S,⇡

0) it is a unit multiple of Q[⇡ 0,� ].

Proof. The independence of r 0 is a simple consequence of 'r 0(vS,⇡
0) and

'r 0(v
[
S,⇡

0)[ being anti-ordinary vectors and Lemma 8.4.9. The remaining claims
of the lemma are consequences of the definition of Q[⇡ 0,� ].

9. Construction of p-adic L-functions

Review of notation. We recall the notation from the previous sections, because
some of it is admittedly counterintuitive. Our basic Shimura varieties are denoted
Sh(V ) (attached to G1) and Sh(�V ) (attached to G2, which is isomorphic to
G1). Classical points of our Hida families correspond to cuspidal automorphic
representations denoted ⇡ and ⇡[, for Sh(V ) and Sh(�V ), respectively. With
our conventions, ⇡ is an anti-holomorphic automorphic representation of G1,
and therefore with respect to the isomorphism G2

⇠
�! G1 is a holomorphic

automorphic representation of G2. Correspondingly, ⇡[, which can be identified
with the complex conjugate of ⇡ , is a holomorphic representation of G1, and
therefore gives rise to a holomorphic modular form—of weight  , in practice—
on Sh(V ); but ⇡[ is anti-holomorphic on G2. The input of the doubling integral
is an anti-holomorphic vector on G3 which comes from a vector w 2 ⇡ ⌦ ⇡[,
that will be identified shortly; this is paired with the Eisenstein measure, which
takes values in the ring of p-adic modular forms on G4 and which specializes
to classical forms of weight  ⌦ [ on G3. We always assume that ⇡ and ⇡[

are anti-ordinary at all primes dividing p; in particular, the vector w has local
components at p that are chosen to be anti-ordinary.
Since one is in the habit of thinking of Hida theory as a theory of families of

holomorphic and ordinary forms, the following lemma may be welcome; in any
case, it is implicit in the assumption that both ⇡ and ⇡[ are anti-ordinary.

LEMMA 9.0.1. Suppose ⇡ is an anti-ordinary and anti-holomorphic represen-
tation of G1. Then the p-adic component ⇡p of ⇡ is also ordinary.

Proof. The property of being ordinary is preserved under complex conjugation,
and by twist by a power of the similitude character. On the other hand, duality
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exchanges ordinary with anti-ordinary representations, by Lemma 8.3.6. Since
⇡ is essentially unitary, it follows that it is both ordinary and anti-ordinary.

More precisely still, the anti-ordinary subspace (or submodule) of ⇡ ⌦ ⇡[ is
denoted Î⇡ ⌦ Î⇡[ . However, it is best to view Î⇡ ⌦ Î⇡[ as a trace compatible system

wr 2 Ŝord
,V (Kr , R)[⇡ ] ⌦ Ŝord

[,�V (K
[
r , R)[⇡

[]; ◆⇤r (wr+1) = wr , (174)

with notation as in Lemma 7.4.9. Thus, in what follows, '⌦'[ 2 ⇡ ⌦⇡[, viewed
as an anti-holomorphic form of level Kr ⇥ K [

r on Sh(V ) ⇥ Sh(�V ), is taken to
belong to Î⇡ ⌦ Î⇡[ , which we now identify (with respect to the factorization (47))
with the subspace

O

w|p

[�a-ord
w,r ⌦ �[,a-ord

w,r ] ⌦
O

� |1

['� ,� ⌦ '
[
� ,�

] ⌦ ⇡ Kp

Sp ⌦ ⇡
[,K̄ p

S p ⇢ ⇡ ⌦ ⇡[. (175)

In other words, these test vectors have local components as in (48), (49), and
(50). (See also Section 8.5 for how we identify anti-holomorphic, anti-ordinary
cusp forms with elements of Î⇡ ⌦ Î⇡[ .) Moreover, we take our vector ' ⌦ '[ to
be integral over O = O⇡ . By our choice in (175), this is then the anti-ordinary
vector w = wr 2 ⇡ ⌦ ⇡[ to which we referred above.
Note that the choice of ' ⌦ '[, and therefore of wr , depends on the level Kr ;

however, the corresponding system {wr } satisfies the trace compatibility relation
(174) by Lemmas 8.3.7 and 8.4.5 and Proposition 8.5.1. In particular, the value
of the (normalized) pairing with the Eisenstein measure is independent of this
choice, and we can specifically take r = d > 2t as in (60), and as required for
the local calculation at primes dividing p.

9.1. Pairings of axiomatic Eisenstein measures with Hida families. We
now apply the considerations of Section 7.5 to the integral over G3. Given a fixed
Hecke character � , we let the parameters  , ⇢, ⇢� determine one another as in
(95), (97). Let �r,⇢ be as in Statement 2 of Lemma 7.4.2, a measure on TH (Zp)
of type � for some p-adic Hecke character � of X p. Choose ⌅ 2 Cr (TH (Zp),
R)⇢� ⇢ Cr (TH (Zp),O)⇢� so that (cf. (156))

�r,⇢(⌅) 2 Sord
,V (Kr , R) ⌦ Sord

[,�V (K
[
r , R) ⌦ � � det . (176)

For ' ⌦ '[ 2 [ Î⇡ ⌦ Î⇡[] ⇢ ⇡ ⌦ ⇡[ we define (in the obvious notation)

L'⌦'[(�r,⇢)(⌅)
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using the normalized canonical pairing (135) of Sord
,V (Kr , R) ⌦ Sord

[,�V (K
[
r , R) ⌦

� � det with

Hd,ord
D (Kr , R)[⇡ ]⌦ Hd,ord

[,D (K [
r , R)[⇡

[]⌦��1 � det ' [ Î⇡ ⌦ Î⇡[]⌦��1 � det
(177)

applied to �r,⇢(⌅) as in (176) and ' ⌦ '[ ⌦ ��1 � det as in (177) (the characters
� and ��1 cancel in the obvious way).
We apply this to the measure Eisr,⇢,� attached to

⌅ 7!
Z

X p⇥TH (Zp)

(� ,⌅) dEis

by Lemma 7.4.2, with dEis an axiomatic Eisenstein measure as in Section 8.2.
First, we need to show that the discussion in Section 7.5 applies to this situation.

9.1.1. Equivariance of the Garrett map. If � : TK ,,R ! C is a character, let
�[(T ) = �(T [), where [ is the involution defined in Lemma 6.6.1(ii).

LEMMA 9.1.2. Let ⇡ be a cuspidal automorphic representation of G of type
(, K ). Then

�⇡̄ = �[
⇡ .

Proof. At unramified places the identity follows from (148). By
Hypothesis 6.6.4 and strong multiplicity one, applied to the base change
to GL(n)K, this in turn implies that the local components of ⇡̄ and ⇡[ are
isomorphic at all places split in K/K+. In particular, we have this isomorphism
at places dividing p; then the identity is a consequence of the uniqueness of
the ordinary and anti-ordinary eigenspaces and the definition of the involution
[.

Let ⇡ be cuspidal of type (, K ), and let ' 2 ⇡ K be an anti-holomorphic
vector. We pick a Hecke character � as in Section 4.1.2. In Section 4.1.4 we
defined the zeta integral

I (','0, f, s) =
Z

Z3(A)G3(Q)\G3(A)
Ef (s, (g1, g2))��1(det g2)'(g1)'0(g2) d(g1, g2).

where '0 2 ⇡̄ and Ef (s, g1, g2) is an Eisenstein series depending on a section f 2
I (� , s). We specialize s to a point m where Ef (s, •) is nearly holomorphic, in
other words where the archimedean component f1 of f satisfies the hypotheses
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of Definition 5.3.2. We consider the Garrett map

G( f,')(g2) = I (', f,m)(g2)

:= ��1(det g2)
Z

Z1(A)G1(Q)\G1(A)
Ef (m, (g1, g2))'(g1) dg1. (178)

When f is clear from context, we set G(') := G( f,'). One of the main
observations of [Gar84,GPSR87] is that if ' 2 ⇡ then I (','0, f, s) ⌘ 0 unless
'0 2 ⇡_, in other words that G(') 2 Hom(⇡_,C) ' ⇡ :

THEOREM 9.1.3. If ' 2 ⇡ then G(') 2 ⇡ .

The forms ' and G(') are on the same group GU(V ) = GU(�V ) but on
different Shimura varieties. The restriction of Ef (m, •) is a holomorphic form
on Sh(V,�V ), which means it pairs with an anti-holomorphic form on Sh(V )
to yield a holomorphic form on Sh(�V ). In terms of parameters, this becomes

COROLLARY 9.1.4. The Garrett map defines a homomorphism

I (� f ,m) ! HomTK ,
(H 0

! (KSh(V ),!)
_, H 0

! (KSh(�V ),![))),

! HomTK ,
(Hd

! (ShK (V ),!D
 ⌦ L(�)), H 0

! (KSh(�V ),![))),

where the Hecke algebras act through the isomorphism in Section 6.6.
Equivalently, (F†)�1 � G(•, •) defines a homomorphism

I (� f ,m) ! HomTK , ,[(H
0
! (KSh(V ),!)

_, H 0
! (K †Sh(V ),!†)).

The factor L(�) was reinserted in the second line in order to respect
the Hecke algebra action. The action of TK , on L(�) factors through the
similitude map.

LEMMA 9.1.5. Let dEis be an axiomatic Eisenstein measure as in
Definition 5.3.2. Then dEis satisfies the equivariance property of
Assumption 7.4.4.

Proof. This corresponds to the equivariance property of the Garrett map stated
in Corollary 9.1.4.

9.1.6. Pairings, continued. Thanks to Lemma 9.1.5, we can proceed as in
Section 7.5. Henceforward we fix an anti-ordinary representation ⇡⌦⇡[ as at the
beginning of Section 9, and we denote by ⇡ 0 the elements of S(Kr1, 

1,⇡), as
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r 1 and 1 vary. In order to guarantee that our global pairings are compatible
with the local calculations in Section 4, especially the local calculations at
primes dividing p, we choose test vectors ' 2 Î⇡ and '[ 2 Î⇡[ that are
anti-holomorphic, anti-ordinary, and integral over O, as described following
Lemma 9.0.1. Proposition 7.3.5 allows us to identify the space Î⇡ ⌦ Î⇡[ with
the corresponding anti-holomorphic, anti-ordinary subspace of ⇡ 0 ⌦ ⇡ 0,[ for
any ⇡ 0 as above. We do so without further comment. The image of ' ⌦ '[

under this identification is denoted '0 ⌦ '0,[ when we need to indicate that
the homomorphism L'0⌦'0,[ is realized by the character �⇡ 0 2 X (1, r 1, R)
attached to ⇡ 0 (see Proposition 7.4.15). Equivalently, we may identify ' with
the element 1⌦ '0 of the free TKp

r1
,1,O,⇡ -module TKp

r1
,1,O,⇡ ⌦ Î⇡ , and '0 with its

specialization at the character �⇡ 0 .
Substituting  ⇢� for ⌅ in the above discussion, with  2 Cr (TH (Zp), R) for

some R ⇢ O and ⇢ as above, we find that, for any ⇡ 0 2 S(Kr1, 
1,⇡), as r 1 and

1 vary, we have

L'0⌦'0,[

✓Z

X p⇥TH (Zp)

(� , ⇢�) dEis
◆

= D(�) · L'⌦'[(res3 D(,m,�0)Eholo
�0, ⇢� (m)). (179)

PROPOSITION 9.1.7. Assume ⇡ satisfies Hypotheses 7.3.2 and 7.3.3. Let ' and
'[ be respectively elements of Î⇡ and Î⇡[ . Let ⇡ 0 2 S(Kr1, 

1,⇡), for some r 1
and 1, and let '0 ⌦ '0,[ be the corresponding element of ⇡ 0 ⌦ ⇡ 0,[. Suppose
(� , ⇢�) 2 Y class

H , with  2 Cr (TH (Zp), R) with � = k • km�u, m > n. Then we
have the equality

L'0⌦'0,[

✓Z

X p⇥TH (Zp)

(� , ⇢�) dEis
◆

= D(�) ·
1

Vol(I 0r,V )Vol(I 0r,�V )
I ('0,'0,[, D(,m,�0) f holo(�u, ⇢�),m).

Proof. Abbreviate [G3] = G3(Q)Z(R)\G3(A), dg�
2 = �(det(g2))�1dg2. By

doubling the formula in Lemma 7.5.3—in other words, by applying it to the
group G3—we obtain

L'0⌦'0,[(res3 D(,m,�0)Eholo
f (� , ⇢� )(m))

=
1

Vol(I 0r,V )Vol(I 0r,�V )

Z

[G3]

D(,m,�0)Eholo
f (�0, ⇢� )

⇥ ((g1, g2),m)'0(g1)'0,[(g2)k⌫(g1)a()k dg1 dg
�
2 .
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Comparing this with Equation (179) and the definition of the zeta integral, we
obtain the equality.

In view of our choices of local vectors in (175), Corollary 9.1.8 below is
then a consequence of the local computations summarized in Proposition 4.6.1,
and of the axiomatic properties of the Eisenstein measure summarized in
Definition 5.3.2 and Corollary 8.2.4.

COROLLARY 9.1.8. Under the hypotheses of Proposition 9.1.7, suppose ' ⌦ '[

is an element of the space defined in (175), and in particular ' and '[ admit the
corresponding factorizations at places dividing p and 1. Let the parameters  ,
⇢, ⇢� determine one another as in Inequalities (95) and Equations (97). Then we
have the equality

L'0⌦'0,[

✓Z

X p⇥TH (Zp)

(� , ⇢�) dEis
◆
= D(�)

Y

v

Iv('0
v,'

0,[
v , fv,m)

= [Vol(I 0r,V )Vol(I
0
r,�V )]

�1h'0,'0,[
� i�

· Ip(� , )I1(� , ⇢�)IS LS
✓
m +

1
2
,⇡ 0,�u

◆

where the factors are defined as in Proposition 4.6.1.

9.2. Statement of the main theorem. We reinterpret the identity in
Corollary 9.1.8 in the language of Proposition 7.4.15.

COROLLARY 9.2.1. Under the hypotheses of Corollary 9.1.8, there is a unique
element L(Eis,'⌦'[) 2 ⇤X p,R ⌦̂T such that, for any classical � : X p ! R⇥

and any ⇡ 0 2 S(Kr1, 
1,⇡) for some r 1, the image of L(Eis,' ⌦ '[) under the

map ⇤X p,R ⌦̂T ! R induced by the character � ⌦ �⇡ 0 equals

[Vol(I 0r1,V )Vol(I
0
r1,�V )]

�1h','[
� i� · Ip(� , 1)I1(� , ⇢�)IS LS(m + 1

2 ,⇡
0,�u).

Here �⇡ 0 is the character of T defined in Section 6.6.8, and the local factors are
defined as in Proposition 4.6.1.

In the language of Corollary 9.2.1 this admits the following reformulation. The
statement is in terms of the highest weight  of the (holomorphic) representation
dual to ⇡ and a Hecke character � . Let the algebraic characters  , ⇢, ⇢�

determine one another, relative to a given � , as in Inequalities (95) and
Equation (97).
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MAIN THEOREM 9.2.2. Let ⇡ be a cuspidal anti-holomorphic automorphic
representation of G1 which is ordinary of type (, K ), and let T = T⇡ be the
corresponding connected component of the ordinary Hecke algebra. Let ' and
'[ be respectively elements of R-bases of Î⇡ and Î⇡[ . Assume ⇡ satisfies the
following Hypotheses:

(1) Hypothesis 7.3.2 (the Gorenstein Hypothesis)

(2) Hypothesis 7.3.3 (the Global Multiplicity One Hypothesis)

(3) Proposition–Hypothesis 7.3.5 (the Minimality Hypothesis).

There is a unique element

L(Eis,' ⌦ '[) 2 ⇤X p,R ⌦̂T

with the following property. For any classical � = k • km�u : X p ! R⇥, and
for any ⇡ 0 2 S(Kr1, 

1,⇡) for some r 1, the image of L(Eis,' ⌦ '[) under the
map ⇤X p,R ⌦̂T ! R induced by the character � ⌦ �⇡ 0 equals

c(⇡ 0,�) · ⌦⇡ 0,� (','
[)I1(� , 1)IS Lp(m, ord,⇡ 0,�u)

LS(m + 1
2 ,⇡

0,�u)

P⇡ 0,�

.

Here �⇡ 0 is the character of T defined in Section 6.6.8 and

⌦⇡ 0,� (','
[) =

h','[
� i�

Vol(I 0r1,V \ I 0r1,�V ) · Q[⇡ 0,� ]
and P⇡ 0,� = Q�1

⇡ 0,� .

Finally, the factor ⌦⇡ 0,� (','
[) is independent of r 1 and p-integral, and is a p-

unit for appropriate choice of ' and '[.

Proof. This follows from Corollary 9.2.1, after we write Q[⇡ 0,� ] = c(⇡ 0,
�)Q⇡ 0,� , as in Lemma 6.7.7. We have used the expression for the local zeta
integral Ip =

Q
w Iw given by the formula in Remark 4.6.2. In particular, the

Vol(I 0r1,V ) and Vol(I 0r1,V ) terms cancel, leaving the factor Vol(I 0r1,V \ I 0r1,�V )
�1.

The final claim follows from Lemma 8.5.3.

9.3. Comments on the main theorem. Even in the setting of ordinary
families of p-adic modular forms on unitary Shimura varieties, this should not
be considered the definitive construction of p-adic L-functions. We list some
aspects that call for refinement.
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REMARK 9.3.1 (The Gorenstein hypothesis). It is often possible to verify the
Gorenstein hypothesis when the residual Galois representation attached to ⇡ has
sufficiently general image, using the Taylor–Wiles method. See [Pil11,Har13b]
for examples. On the other hand, it is certainly not valid in complete generality.
Since the Gorenstein condition is an open one, one can obtain a more general
statement by replacing ⇤X p,R ⌦̂T by the fraction fields of its irreducible
components. The method of this paper then provides p-adic meromorphic
functions on each such components, which specialize at classical points as
indicated in the Main Theorem.

REMARK 9.3.2 (The multiplicity one hypothesis). For an automorphic
representation of a unitary group such as G1 whose base change to GL(n)
is cuspidal, the global multiplicity one Hypothesis 7.3.3 is a consequence
of [Mok15, KMSW14]. However, the version in Hypothesis 6.6.4 is restrictive,
as already noted in Section 6.6. Here we sketch an argument for removing this
hypothesis.

(1) The first and most difficult step is to find the appropriate notation for the
collection of ⇡ 0 such that �⇡ 0 = �⇡ – in other words, the global L-packet
containing ⇡ . We let h⇡i denote the set of such ⇡ 0.

(2) Note in particular that h⇡i ⇢ S(Kp,⇡) (see (149) and the discussion above
Hypothesis 7.3.3). Thus, the isomorphisms in Lemma 6.6.10 need to be
modified. We have an isomorphism

jh⇡i :
M

⇡i2h⇡i

⇡ ord
p ⌦ ⇡ KS

i,S
⇠=

M

⇡i2h⇡i

⇡ KS
i,S

⇠
�! Sord

 (Kr ; E)[�⇡ ] ⌦E C

and an isomorphism
M

⇡i2h⇡i

Sord
 (Kr ; R)[⇡i ] := Sord

 (Kr ; R)⇡ \ Sord
 (Kr ; E)[�⇡ ]

which is identified by jh⇡i with an R-lattice in
L

⇡i2h⇡i ⇡
ord
p ⌦ ⇡ KS

i,S
⇠= ⇡ KS

S .

(3) Lemma 6.6.12 needs to be modified analogously, but the definition given
there of Hd,ord

D (Kr , R)[⇡ ] defines a lattice in the sum of the ⇡
[,KS
i,S . This is

not adequate if we want to account for congruences between the different
local constituents of the ⇡i at ramified places where the L-packets are
not singletons. On the other hand, if we only care about measuring the
congruences between ⇡ and the ⇡ 0 2 S(Kp,⇡) that define different global
Galois representations, then we can leave the definition of Hd,ord

D (Kr , R)[⇡ ]
as is, and modify the isomorphisms in Lemma 6.6.12 as in (2) above.
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(4) We also need to modify the statement of Lemma 6.6.5: the isomorphism in
(i) is replaced by

jh⇡i :
M

⇡i2h⇡i

⇡ KS
i,S ⌦ ⇡ Ir

p
⇠

�! S(Kr ,C)(⇡)

and the isomorphism in (ii) is replaced analogously.

(5) The spaces Î⇡ and Î⇡[ would have to be replaced by direct sums over the ⇡i .

(6) Finally, the identification in Lemma 9.1.2 only depends on Hypothesis 7.3.3
and not on the stronger Hypothesis 6.6.4.

Point (5) is the most objectionable, because it is not really compatible with
the Minimality Hypothesis 7.3.5. An alternative approach would be to choose
an idempotent e⇡,S in the Hecke algebra of G relative to KS that isolates the
representations ⇡v at all inert v 2 S. Thus, for ⇡i 2 h⇡i,⇡i 6= ⇡ , e⇡,S ? ⇡i = 0.
If we then redefine Sord

 (Kr ; E)[�⇡ ], Hd,ord
D (Kr , R)[⇡ ], and so forth, to be the

image of projection with respect to e⇡,S , all of the main theorems remain true
without modification. Better still, we can choose ē⇡,S to be an idempotent modulo
p and lift it to an idempotent in characteristic 0, in order to avoid introducing
extraneous divisibilities by p in the final result and eliminating interesting
congruences between members of the L-packet.

REMARK 9.3.3 (The Minimality hypothesis). This is a consequence of one part
of the Gorenstein Hypothesis, and was included in order to work with a module
[ Î⇡ ⌦ Î⇡[] that is locally constant on the Hida family. One can easily eliminate
this hypothesis, but the statement is no longer so clean.

REMARK 9.3.4 (Unspecified local factors). The volume factor IS is a
placekeeper. It might be more illuminating to replace IS by

ĨS =
Y

v2S

Lv

✓
m +

1
2
,⇡v,�u,v

◆�1

IS

and write the specialized value of the L-function

c(⇡) · ⌦⇡ (','
[) · I1(� , ) ĨS Lp(m, ord,⇡,�u)

L(m + 1
2 ,⇡,�u)

P⇡

.

Here L(s,⇡,�u) denotes the standard L-function without the archimedean
factors. Written this way, one sees that the inverted local Euler factors Lv(m+ 1

2 ,
⇡v,�u,v)

�1 can give rise to exceptional zeroes.
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Ideally one would like to choose an optimal vector in [ Î⇡ ⌦ Î⇡[] and to adapt
the local Eisenstein sections at primes in S to this choice. This would settle the
issues of minimality and local factors simultaneously. At present we do not see
how to carry this out.

REMARK 9.3.5 (The congruence factors). It is expected at least under the
Gorenstein hypothesis that a congruence factor c(⇡) can be chosen to be the
specialization at ⇡ of a canonical p-adic analytic function c that interpolates the
normalized and p-stabilized value at s = 1 of the adjoint L-function L(s,⇡, Ad).
The factor c(⇡) that appears in Main Theorem 9.2.2 depends on the choice of
period Q⇡ , which in turn depends on the choice of f in Lemma 6.7.3. As ⇡
varies, the vector f can be chosen uniformly in the Hida family, but there is no
obvious preferred choice. For this reason, one can only define the hypothetical
analytic function c up to a unit in the Hecke algebra. This is a persistent problem
in the theory, and it has been noted by Hida in [Hid96].
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